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Preliminaries and Essential Reading

There are two reasons you may be referring to this Handbook. First, you may be consid-
ering using the GHRS to observe some celestial object, and you would like to know

what the instrument can do and how long it might take. Better yet, your proposal to use

the Hubble Space Telescope with the GHRS has been successful and you now need to

supply all the details of your observations that are needed in Phase II of proposal pro-

cessing.

Both tasks may seem daunting at first because any versatile instrument has many

options. But for what most people want to do most of the time there are defaults that

apply, and the GHRS is, in fact, a very easy-to-use device. Once you know that what

you want to do falls within the bounds of conventional uses of the spectrograph, you can

proceed with some confidence that your observations will be successfully obtained in

the form you originally desired. Or you can at least get a sense that what you are propos-

ing is truly unusual and may push the limits of the instrument.

This Handbook exists as a basic reference manual for the Goddard High Resolution

Spectrograph (GHRS), and describes its properties and operation. This Handbook is

revised and reissued approximately once each year. This version is written for observers

wishing to propose to use the GHRS in HST's Cycle 5, and it supersedes all previous

versions of the Instrument Handbook. No lIST document stands alone in providing

complete information because each fills a particular need. The Call for Proposals, for

example, describes the proposal submission process and provides a summary of the

observatory and its instruments. The Phase I1 Proposal Instructions give detailed
instructions for providing STScI with the specifications that translate your program into

commands that liST executes. The instrument handbooks supplement both documents

by providing the technical details of instrument performance and operation. The lIST

Data Handbook describes how software takes the raw data from the telescope and trans-

forms it into a reduced and calibrated form for your further analysis and interpretation,

and how you can duplicate those steps.

lIST is now a fairly mature spacecraft and so we can predict what many observers will

need. This Handbook is designed around the needs of the majority of users, so that

essential information is concentrated in a few sections. Full details must also be given,

of course, and they are provided in a reference section. We demonstrate the ease of use

of the GHRS by providing examples for some of the different situations that a user

might encounter. We have also tried to provide the information you need to decide when

your observations deviate from the "normal" and involve special aspects.

No handbook of this kind can be complete and error-free until the instrument itself is

obsolete. We have, of course, edited it thoroughly, but if significant revisions are called
for they will be announced via STEIS !, as with other lIST news items. Do not be afraid

to consult with us if you have questions; the means of contact are provided just after the

title page.

As we said, this particular version of the GHRS Instrument Handbook is being written

for Cycle 5 of the lIST science program. That means that we are providing information

on how the instrument works after the Servicing Mission installed COSTAR and a

GHRS Repair Kit. COSTAR changed the image scale of lIST at the entrance apertures

1. This and other terms are defined and described in a Glossary at the end of this Handbook.
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PreliminariesandEssentialReading

of the GHRS; it also produces diffraction-limited images, but does not alter GHRS oper-

ations in any fundamental manner. In other words, COSTAR alters some of the parame-
ters used in various calculations for pointing and throughput, but the instrument still

operates in the same way.

The GHRS Repair Kit enabled the reactivation of Side 1 of the GHRS, once again per-

mitting short-wavelength echeile spectra to be obtained, as well as spectra with the

GI40L and Gi40M gratings. At the time this is written Side l reactivation has been

completed and a few observations have been made. They indicate that Side ! is per-

forming with essentially the same science capabilities that it had at the time of liST's

launch.

1.1 This Handbook

If you have looked through the Table of Contents, you will have seen that this Hand-

book is divided into four parts:

Pan I is a summary in which this Handbook is described and suggestions are made

on how to use this document and how it is related to other HST-related documents.

Pan I also describes how lIST proposals are processed for review by the Telescope

Allocation Committee (TAC) and how successful proposals get turned into com-

mands that the spacecraft can execute; and it describes how the installation of COS-
TAR affects the GHRS and what the basic properties of the instrument are.

Pan II elaborates on the writing of proposals to use the GHRS, both for Phase I and

Phase II. The Phase I proposal is what the TAC sees, and it describes the observa-
tions to be made in broad terms. The most important technical decisions to be made

regard the target acquisition strategy to adopt and the amount of exposure time to

request. The Phase II proposal encompasses all the details that the planning and

scheduling systems need to turn your program into commands for the spacecraft.

Pan Ill is a reference section, and it includes the details that a Handbook should

without cluttering the introductory explanations.

Pan IV is a short glossary of GHRS terms and abbreviations and an index.

Data reduction and analysis are not covered in this Handbook because they are treated
in detail in the HST Data Handbook, although we anticipate merging portions of that

document into this in the future.

External references have been included where appropriate in order not to duplicate what

is available elsewhere, but we have tried to include almost everything you need to know

about the GHRS when writing a proposal. If you find that you need information that is

not in here, please consult with us.

This document follows the usual STScI convention in which terms, words, and phrases

which are to be entered by the user in a literal way on a form are shown in a typewriter

font (e.g., BRIGHT=RETURN, EARLY ACQ).

GHRS Instrument Handbook 5.0 7



Preliminariesand Essential Reading

1.2 Changes since the previous version
V=

1.2.1 This Handbook

This version of the GHRS Instrument Handbook has been only modestly rewritten. It

incorporates a few updates since version 4.0 that were issued electronically. Please

bring errors to the attention of a GHRS Instrument Scientist (see back of title page). As

before, wavelength units in this Handbook are in Angstroms (,_), in keeping with astro-

nomical tradition. A transition to SI units may take place in a future edition.

1.2.2 Side I Availability

At the time this is written, the capabilities of Side 1 of the GHRS have been fully

restored, permitting one to obtain high-, medium-, or low-resolution spectra with a

cesium iodide photocathode. We encourage you to consider its use. The low-resolution

mode on Side 1 using grating GI40L particularly makes the GHRS useful for observing

faint objects in the far ultraviolet. The next two paragraphs discuss issues related to
acquiring such targets.

1.2.3

1.2.4

Acquiring Extended Objects with the GHRS

An EXTENDED option for ACQ/PEAKUP was described in earlier versions of this

Handbook. It will be tested in Cycle 4 and should be available for routine use in

Cycle 5. It was written with the Gallilean satellites of Jupiter in mind, but should be

applicable to other extended objects. See Section 4.1.5.4 on page 39 for more details.

We have also provided some guidance for users who may wish to observe extended

objects so that acquisition count rates can be estimated; see Section 7.3 on page 76.

Acquiring Faint Objects with the GHRS or FOS

In some cases the G140L grating on Side 1 may provide an efficient means of obtaining

a low-resolution spectrum of a source, but acquiring that object can be difficult or

impossible with the GHRS' Side 1 because of the limited response of mirror N1 and the

maximum permissible STEP-TIME of 12.75 seconds. There are two ways to overcome
this problem:

• Acquire the object with Side 2 of the GHRS (mirror N2), then observe with Side 1.

Using this technique will add about 40 minutes of overhead time involved in switch-

ing Sides, but often that can occur when the spacecraft is behind the earth anyway.

• Acquire the object with the Faint Object Spectrograph and then move it to the LSA

of the GHRS. The positions of the COSTAR mirrors for the FOS and GHRS are

quite close, so that the movement of an object from an FOS aperture to the LSA of

the GHRS is only about 1 arcmin, a small enough motion to ensure that the object
will fall within the LSA because one set of guide stars will suffice. This method
should not be used for SSA observations.

At the time this is being written this method of cross-spectrograph acquisitions is being

evaluated and tested. Please consult with us if you wish to consider using it. Also please

8 GHRS Instrument Handbook 5.0



PreliminariesandEssentialReading

note that the opposite sense will also work, namely acquiring a "bright" object with the
GHRS in order to observe it with the FOS.

1.2.5

1.2.6

1.2.7

Noise Rejection for Very Faint Objects

A special commanding option called FLYLIM can be invoked to reject noise in the

GHRS when the object observed is significantly fainter than the level of the background

noise. Although only applicable in special situations, it can be very effective. Please see

Section 8.6.3 on page 97.

The Proposal Process for Cycle 5

The basic methodology of proposal writing for HST has been changed. You should rely

on the proposal instructions being issued with this Handbook for guidance if there are

any conflicts, but the essential information needed (sequence of operations and expo-

sure times) has not changed.

Updated Instrument Parameters

Because of the Servicing Mission, the GHRS is a brand-new instrument in many

respects. We have undertaken to measure many basic instrumental quantities, such as
sensitivities, ab initio so that observations obtained in Cycle 4 and beyond can be cali-

brated to the best possible level. Many of those observations were not been fully ana-

lyzed at the time this Handbook was last revised before issuance. The numeric values

herein, particularly sensitivities, are therefore not "final" values that will be in place for

data reduction, but they do reflect our knowledge of the post-Servicing Mission GHRS

and will therefore lead to reliable exposure estimates. Updated information will be pro-
vided on STEIS as it becomes available.

1.2.8

1.2.9

GHRS Sensitivity

The sensitivity of the GHRS has turned out to be more wavelength-dependent than was

anticipated prior to the Servicing Mission; see Section 8.1 on page 82. The reasons for
this are not known, but users should use the measured sensitivity values in Section 8.2.3

on page 85 and Section 8.3.1 on page 87 when calculating exposure times and should

definitely not scale exposures from older proposals.

GHRS Aperture Nomenclature

The plate scale at the entrance apertures of the GHRS is altered by COSTAR such that

the angular scale per unit of physical length is reduced by a factor of 0.87. (COSTAR's
mirrors also introduce anamorphic magnification, but its effect is so small - about 0.5%

- that it is ignored here.) That means that the aperture sizes change in the following

way:

Aperture

Large Science Aperture (LSA)

Small Science Aperture (SSA)

Nomenclature

2.0

0.25

Pre-COSTAR Size New Size

2.00 arcsec 1.74 arcsec

0.25 arcsec 0.22 arcsec

GHRS Instrument Handbook 5.0 9



PreliminariesandEssentialReading

Note that the names used to designate the apertures of the GHRS have not changed even

though their angular sizes did. To lessen confusion somewhat, we will use "LSA" and

"SSA" to refer to the large and small apertures, respectively, of the GHRS.

Do not use out-of-

date documents

as a source of

information! If this

Handbook does

not contain the

information you

need, please

consult us.

1.3 Where to find additional information, changes, errata, etc.

As we mentioned, the CaUfor Proposals provides an overview of lIST capabilities and

describes how a Phase ] proposal is to be prepared. It goes hand-in-hand with the

Phase I Proposal Instructions and documents for the Remote Proposal Submission Sys-

tem (RPSS). If your proposal is successful, you will need to submit a Phase II proposal

that provides all the specific details we need to ensure that your observations are

obtained in the form you intend. This Handbook provides much of the information you
will need in Phase II, with the proposal procedures themselves in a Phase II Proposal

Instructions book. There is also a separate document that describes how to process and

reduce GHRS data. Contact the User Support Branch of STScI for further details.

(Please note, incidentally, that the Target Acquisition Handbook is no longer produced

because it is redundant.)

There is a separate document titled lIST Data Handbook that describes how HST data

are reduced by the "pipeline" system and how you can reproduce those steps to tailor

the reduction to your needs. A copy may be obtained from the User Support Branch.

This Instrument Handbook is written to apply to the Goddard High Resolution Spec-

trograph as it will be configured and will operate in Cycle 5 of the liST science pro-

gram. The installation of COSTAR has changed the dimensions of the apertures and
other elements of GHRS as measured in arcsec projected on the sky. The new dimen-

sions have been used throughout this document. This Handbook supersedes all previous
versions, but if another document conflicts with this Handbook, you should use the one
with the most recent date-of-issue.

You should also be aware of STEIS, the Space Telescope Electronic Information Ser-

vice. STEIS provides an easy way to check for updates to existing documents and to get
HST-related information and news. To use STEIS, ftp to stsci.edu, enter anonymous as

the user and your last name as the password. Transfer the README file in the highest-

level directory with a get command to get basic information. Various subdirectories pro-

vide details on specific subjects. For more information on STEIS, contact the User Sup-

port Branch. The xterm interface toftp called Mosaic is an especially effective way to
access STEIS.

You are always welcome to call us, the STScI GHRS team, to get information when you

find yourself confused or at a loss. We prefer e-mail (to the addresses on the back of the

title page), but you may contact us by telephone if you wish.

Finally, you will find some additional sources of information in Chapter 9.
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Instrument Summery -- Why Use the GHRS?

The Goddard High Resolution Spectrograph was built to obtain high-quality spectra of

astronomical sources efficiently. The GHRS can also record images of the objects it

observes, but that is mostly as an adjunct to its spectroscopic properties to confirm

pointing.

v

2.1.1

2.1.2

2.1.3

2.1 Fundamental properties of the instrument

Here we provide a brief overview of the basic properties of the GHRS. Each of these

aspects is described in more detail in the next two chapters. Chapters 6, 7, and 8 provide

illustrations of the GHRS and tables of instrument parameters.

Entrance Apertures

The source to be observed may be centered in a Large Science Aperture (LSA) or a

Small Science Aperture (SSA) l. Because of the installation of COSTAR, the LSA is

1.74 arcsec square and the SSA is 0.22 arcsec square, although they retain their pre-

COSTAR names (2.0 and 0.2 5, respectively). The high-quality images that COSTAR

produces mean that spectra with good spectroscopic resolution result when the LSA is

used. The SSA has about 50 to 70% of the throughput of the LSA; using the LSA will

degrade resolution by 10 to 20% compared to the SSA because of the wings to the

instrumental profile.

The LSA has a shutter which automatically closes when an observation with the SSA is

being performed, in order to reduce stray light.

Useful Wavelength Range

The GHRS can obtain spectra from about 1150 to 3200 A. These limits are set by the

magnesium fluoride coatings on liSTs optics and by the nature of the detectors. The

additional two reflections introduced by COSTAR's mirrors significantly reduce

throughput at the very shortest wavelengths (i.e., below Lyman:o0 so that even very
bright stars (e.g., p. Col) have failed to produce detectable flux below 1150 A,. It is possi-

ble to observe bright stars out to 3400 A,.

Available Resolving Powers

With Side 1, observations may be made from 1150 to 1800 ,/_at _= 2,000, 25,000, and

80,000 (gratings GI40L, GI40M, and Ech-A, respectively). With Side 2, the options ate
R = 25,000 from 1150 to 3200 A (GLOOM, G20OM, and G270M) and _= 80,000 from

1680 to 3400 ._ (Ech-B). For certain applications it can be advantageous to use grating

G270M to wavelengths as low as2100 A becauseof its high efficiency.

1. We will use"LSA" and"SSA" to denotethe two scienceaperturesof the GHRS in this docu-
mentin order to lessenambiguityabouttheir apparentsize.Note that the official nomenclatureof
"2.0" and"0.25" doesnot changedespitethe fact that these two aperturesare now 1.74 and
0.22 an:sexsquarerespectively.
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InstrumentSummeryD Why Use the GHRS?

2.1.4 Photometric Precision and Accuracy

Routine calibrations on standard stars provide flux-calibrated spectra that are accurate to
10% I . Relative fluxes obtained at different wavelengths should be good to better than

5%. The repeatability of fluxes is even better, being better than 1%; i.e., it is possible to

compare measures of the same wavelength in the same star at different times to within
! % for observations with the LSA.

Within a single bandpass (i.e., one grating setting), relative photometric precision is

limited by photon statistics for S/N < 30 and by detector non-uniformities above that,

provided that the detectors are being used within the linear portion of their response.

With suitable observing strategies, it is possible to achieve relative S/N as high as 900
(Lambert et al. 1994) 2.

We have found that the photometric sensitivity of the GHRS has not changed with time
to within 1% or less.

2.1.5

2.1.6

Time Resolution

Most observers use the GHRS to accumulate photons for the time needed to reach the

signal-to-noise they desire. In ACCT._ mode the exposures may be as short as 0.2 sec-

onds, although use of standard procedures for improving S/N usually limits exposures

to no shorter than about 15 seconds. The GHRS has a rapid readout mode (RAPID) that

can obtain spectra as often as every 50 milliseconds, but that can only be done by sacri-

ficing many features that are important for producing high-quality spectra.

Operational Complexity

The limited availability of memory on the HSTspacecraft means that there exists a max-

imum number of operating commands that can be in place for a single set of observa-
tions. That can be a limit for use of the GHRS in certain cases, described later

(Section 4.6 on page 47).

2.2 A Brief Description of the Instrument and Its Operation

The GHRS has the usual components of an astronomical spectrograph: entrance aper-
tures, a collimator, dispersers, camera mirrors, and detectors. There are also a wave-

length calibration lamp, flat field lamps, and mirrors to acquire and center objects in the

observing apertures. The apertures were described above in basic terms, and are illus-

trated in Section 6.1 on page 56. The collimator and camera mirrors are unexceptional

and need no further description here (see Section 6.2 on page 60 for details). The impor-
tant elements are the dispersers and the detectors.

1. Starting in Cycle 4, the routine fluxes delivered by the pipeline data reduction system are no
longer on the IUE system but instead have been adjusted to conform to models of the white dwarf
G 191B2B. This can produce systematic differences when comparing observations.

2. References are listed in Chapter 9.
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InstrumentSummarym Why Use the GHRS?

The dispersers are mounted on a rotating carrousel, together with several plane mirrors
used for acquisition. The first-order gratings are designated as G 140L, G 140M, G 160M,

G200M, and G270M, where "G" indicates a grating, the number indicates the blaze

wavelength (in rim), and the "L" or "M" suffix denotes a "low" or "medium" resolution

grating, respectively. The GHRS medium resolution first-order gratings are holographic
in order to achieve very high efficiency within a limited wavelength region. G 140L is a

ruled grating. The first two first-order gratings, GI40L and GI40M, have their spectra

imaged by mirror Cam-A onto detector DI, which is optimized for the shortest wave-

lengths. The other three gratings have their spectra imaged by Cam-B onto detector D2,
which works best at wavelengths from about 1700 to 3200 _, but which is also useful

down to 1200/t,.

The carrousel also has an echelle grating. The higher orders are designated as mode

Ech-A, and they are imaged onto D 1 by the cross-disperser CD 1. The lower orders are

designated as mode Ech-B, and they are directed to D2 by CD2. Finally, mirrors N1 and

A1 image the apertures onto detector D1, and mirrors N2 and A2 image onto D2. The
"N" mirrors are "normal," i.e., unattenuated, while the "A" mirrors ("attenuated")

reflect a smaller fraction of the light to the detectors, so as to enable the acquisition of

bright stars. (To be precise, the mode designated as N1 actually uses the zero-order

image produced by grating G140L.)

Use of the various gratings or mirrors in concert with the camera mirrors produces one

of three kinds of image at the camera focus: 1) an image of the entrance aperture, which

may be mapped to find and center the object of interest; 2) a single-order spectrum; or 3)

a cross-dispersed, two-dimensional echelle spectrum.

The flux in these images is measured by Digicon detectors, and the portion of the image

plane that is mapped onto the Digicon is determined by magnetic deflection coils. The
detectors are the heart of the GHRS and they involve subtleties that must be understood

if the instrument is to be used competently.

First, there are two Digicons: DI and D2. D1 has a cesium iodide photocathode on a
lithium fluoride window; that makes D1 effectively "solar-blind," i.e., the enormous

flux of visible-light photons that dominate the spectrum of most stars will produce no

signal with this detector, and only far-ultraviolet photons (1100 to 1800 A) produce

electrons that are accelerated by the 23 kV field onto the diodes. D2 has a cesium tellu-

ride photocathode on a magnesium fluoride window. Each Digicon has 512 diodes that
accumulate counts from accelerated electrons. 500 of those are "science diodes," plus

there are "corner diodes" and "focus diodes" (see Chapter 6).

Second, both photocathodes have granularity - irregularities in response - of about

0.5% (rms) that can limit the S/N achieved, and there are localized blemishes that pro-

duce irregularities of several percent. The Side 1 photocathode also exhibits "sleeking,"
which is slanted, scratch-like features that have an amplitude of I to 2% over regions as

large as half the faceplate. The effects of these irregularities could in principle be

removed by obtaining a fiat field measurement at every position on the photocathode,

but that is impractical. Instead, the observing strategy is to rotate the carrousel slightly

between separate exposures and so use different portions of the photocathode. This pro-
cedure is called an FP-SPLTT, and with it each exposure is divided into two or four

separate-but-equal parts, with the carrousel moving the spectrum about 5.2 diode widths
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each time in the direction of dispersion. These individual spectra can be combined

together during the reduction phase.

Third, the diodes in the Digicons also have response irregularities, but these are very

slight. The biggest effect is a systematic offset of about 1% in response of the odd-num-
bered diodes relative to the even-numbered ones. This effect can be almost entirely

defeated by use of the default COMB addition procedure. COMB addition deflects the

spectrum by an integral number of diodes between subexposures and has the additional
benefit of working around dead diodes in the instrument that would otherwise leave

image defects.

Fourth, the Digicons' diodes are only slightly smaller than the image of the SSA pro-

duced by the optics, and are larger than the point spread function (PSF) for HST. Thus
the true resolution of the spectrum cannot be realized unless it is adequately sampled.

That is done by making the magnetic field move the spectrum by fractions of the width

of a diode, by either half- or quarter-diode widths, and then storing those as separate

spectra in the onboard memory. These are merged into a single spectrum in the data

reduction phase. The manner in which this is done is specified by the STEP-PATT

parameter, described in more detail later. The choice of STEP-PATT also determines

how the background around the spectrum is measured.

Defaults exist for these parameters and they have been set to yield the best quality of

spectrum for the configuration to which they apply (except for FP-SPLIT, which

must be invoked explicitly). Details on the defaults are provided later (Section 4.3 on

page 43), but we strongly encourage you to use the defaults unless there are compelling

reasons not to.

2.3 A Little About How HSTand GHRS Work

Because of the difficulties of working with and communicating with a satellite in low-

earth orbit, and in order to make HST more efficient, virtually all actions taken by the

spacecraft are planned weeks in advance. Only a small fraction of HST's time can be
used for real-time actions that are at the discretion of the observer, and even then the

realm of possible actions is very limited, being restricted to deciding which object in the
field should be centered in the aperture before a subsequent observation is begun.

This need for detailed planning of HST observations lies at the heart of the apparent

complexity of the use of the spacecraft and its instruments. At the same time, by care-
fully laying out every aspect of what you want done you will find yourself with a better

understanding of what actually happens and more confidence that the desired results

will be achieved.

All HST observations begin with an acquisition. An acquisition can be as simple as

blindly pointing to particular celestial coordinates, although such a procedure is

unlikely to succeed with the GHRS because its entrance apertures are small. For the

GHRS, an acquisition usually means a pointing to precisely specified coordinates, small

motions of the telescope in a spiral pattern to sample the region of sky in the vicinity of
the coordinates, and then a peakup motion to center a star in the aperture after on-board

software has determined its location. Variations include offsetting from the acquired star

to another nearby object or moving the star to the small aperture. In rare cases it may be
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necessary to perform an interactive acquisition, in which the observer specifies the

object in real time. An intermediate possibility is to take an image with one of liST's

cameras (or with the GHRS itself) in advance of the spectroscopic observation (by one

to two months) and to then derive precise coordinates from that image (an early acquisi-

tion). For very faint objects, especially those to be observed with Side 1 of the GHRS, it

is possible to acquire the object with the Faint Object Spectrograph before moving it to
the LSA.

Once the star has been properly positioned in the appropriate aperture of the GHRS, sci-

ence observations may begin. In some cases you may wish to use IMAGE mode, which

can map the LSA at ultraviolet wavelengths, but in general this part means dispersing

the light with one of the gratings and adding up the counts to form a spectrum. A
RAPID mode also exists to record spectra that change on very short time scales. The

GHRS has no independent microprocessor and so depends on the spacecraft's computer
and memory for control of its operations. One implication of that dependence is that

there is a maximum number of commands that can be stored at any one time. Since

those commands are generally loaded into the spacecraft only a few times per day, that
limitation restricts the total number of GHRS exposures that may be made in a 24 hour

period. At the same time, image motion within the instrument that is induced by the
earth's magnetic field (see Section 8.6.5 on page 98) is best dealt with by making indi-

vidual exposures no longer than about 5 minutes, thereby increasing the total number of

exposures you need to make to get a science observation. In some cases these require-

ments come into conflict and compromises must be made to accommodate science
goals.

Some other relevant aspects of scheduling//ST observations are:

• Objects in most regions of the sky "rise" and "set" and will be available for science

observations for about half of an orbit (about 45 to 50 minutes). Longer exposures
get spread over several orbits, with a reacquisition at the beginning of each orbit, but

this occurs at no practical cost in science terms since the GHRS' detectors are pho-

ton counters. Some objects sometimes fall within liST's Continuous Viewing Zones

(CVZs), which enables them to be observed for long times at high efficiency; see the
Call for Proposals for details on taking advantage of the CVZs.

• The orbit of lIST passes through the South Atlantic Anomaly (SAA), which is a

region in which the background count rate is very high. At present the scheduling

software simply stops the counting of photons during times when the spacecraft is
within the SAA.
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2.4 GHRS Modes of Operation

GHRS has several operational modes for target acquisition and obtaining science data.

See also Section 4.1 on page 35 for more discussion of acquisitions.

Target Acquisition Mode

Onboard Acquisitions

Most targets observed with the GHRS can be automatically acquired with an onboard

acquisition (ONBOARD ACQ). An onboard target acquisition observation consists of dis-

tinct phases, which are executed in ascending numerical order. Phases 1 and 2 perform
initialization and internal calibration functions, and need not concern the observer. The

third phase is called Target Search. A series of small angle maneuvers, called a "spiral
search," scans an area of the sky centered on the initial position. The flux coming

through the Large Science Aperture (LSA) is measured at each dwell point in the
search. If the BRIGHT=RETURN option has been chosen (and it is recommended), the

telescope returns to that dwell point which had the greatest number of counts. If
BRIGHT and FAINT limits have instead been specified, the flux is compared to these

upper and lower limits at each step in the spiral, and if the measured value falls between

these limits the target is assumed to be within the aperture and the search immediately

stops. You may request that a field map be generated at the final dwell point by means of

the I¢_.P optional parameter. You should be aware, though, that approximately two min-

utes is required for each map, and that many pointings may be made during the search.

(If you intend to analyze the maps in real time, the search phase must be done as an

interactive acquisition.) If you wish to confirm the spacecraft's pointing, we recommend

obtaining an IMAGE after the acquisition instead of using the MAP option - see

Chapter 4.

The fourth phase is target locate (ACQ/PEAKUP). This process measures the precise

location of the target within the aperture, and requests a small angle maneuver to move

it to the center. The field map of the LSA may be made before the centering maneuver is

performed by specifying MAP=F_MD-POII_. If done after the centering (in IMAGE
mode), the map can be helpful for confirming that the object was placed precisely in the

center of the aperture 1. The final phase of an acquisition is a flux measurement in which

the flux entering the GHRS through the final target aperture is measured and inserted
into the data. After centering, a second maneuver will automatically translate the object

to the SSA if that is the aperture specified for the observation. An ACQ / PEAKUP with

"0.2 5" as the specified aperture will also center the object in the SSA.

1. Please don't get the wrong impression. Getting an image of the aperture to confirm pointing is
rarely necessary or useful and we mention it here mostly for completeness. If you are working in
a crowded field, it might help to know exactly what was in the aperture after the fact.
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2.4.1.2

For some kinds of difficult targets an onboard acquisition may not work. Possible causes
might be:

• The error in the coordinates is greater than a few arcsec in either declination or right
ascension, so that the target lies outside the largest area that the GHRS can search in
its onboard procedure.

• The object is a moving target whose coordinates could not be predicted with .+..5arc-

sec accuracy when the proposal was written. Features in the atmosphere of a planet,
and comets are possible examples.

• The object has a poorly known or unpredictably variable ultraviolet flux.

• The target has nearby neighbors of similar brightness - the onboard search process
could center up on the wrong object.

The object has a spatial extent greater than two arcsec. The automatic centering

algorithms may not produce acceptable results on objects comparable in size or
larger than the Large Science Aperture.

The object is too faint to get adequate counts with the maximum permissible integra-
tion time of 12.75 seconds.

In many cases these problems can be worked around by using an onboard acquisition on

a nearby star and then offsetting to the object of interest, or, perhaps, by using the FOS
to acquire before slewing the target to the GHRS.

Eady and Interactive Acquisitions

You may choose to obtain an early acquisition (EARLY ACQ) image with WFPC2, FOC,

or GHRS itself. In some cases an acquisition image would be helpful, but the field of

view of the WFPC2 is not needed. Stationary point sources in crowded but recognizable

fields would be examples. The GHRS has its own "'field map" capability which will pro-

duce an image of the sky as seen through the LSA. Each map is a square array of 16 x

16 pixels, covering 1.74 × 1.74 arcsec with 0.11 arcsec spatial resolution. A single field

map requires a minimum of two minutes to take the data and send it to the ground, and

much longer if each point in a spiral search is mapped or if a STEP-TIME longer than
the default (0.2 sec) is used. One WFPC2 image requires from three to five minutes, but

covers a much larger area of the sky. As a practical matter, if more than one field map
would be needed, a WFPC2 image may be a more efficient choice. The FOC could also

be an appropriate choice for ultraviolet-bright objects.

If an interactive acquisition (INT ACQ) is required, the observer must be present at

STScI, prepared to inspect the image and identify the target in a timely fashion. Real-

time observations are subject to many constraints and are difficult to schedule (they are
occasionally impossible). Early acquisition should therefore be chosen in preference to

interactive acquisition whenever possible. The lIST (Phase I) Proposal Forms require
justification of requests for real-time observation.

v
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2.4.2 Science Data Acquisition Modes

There are several modes of science data acquisition, including Accumulation Mode,

Rapid Readout Mode, and Image Mode. Each of these modes may be used in conjunc-

tion with any of the optical configurations described earlier.

Accumulation Mode

Accumulation Mode (ACCLTM) is the normal way of obtaining a spectrum with the

GHRS. The name refers to the fact that data can be accumulated in the onboard com-

puter during a long exposure. All of the features of the flight software are available in

this mode, making it the most powerful, flexible, and automatic way to use the GHRS.

There are two types of benefits which one can expect by using the flight software in
Accumulation Mode.

The first is the ability to make long duration observations with effective and automatic

control of the process. The time varying Doppler shift caused by the orbital velocity of

the spacecraft is compensated for automatically. The software constantly monitors a set
of data quality criteria and can flag, reject, or reobserve individual integrations that fail

the tests. Finally, the software can suspend the observation during scheduled or unex-

pected interruptions, such as occultation of the target by the Earth or passage through

the South Atlantic Anomaly, and then resume when the interruption ends. The very low

background count rate and absence of readout noise in the Digicons make exposures of

hours duration feasible, though it is strongly suggested that these be broken into shorter

segments to aid in scheduling and protect against catastrophic data loss in the event of

an unexpected problem.

The second category of benefits results from the ability of the software to perform pat-

terns of integrations at closely spaced positions on the photocathode, a process which is

referred to as substepping. There are four purposes for this. At the beginning of an

observation, the software executes a procedure called Spectrum Y Balance (SPYBAL)

to find the optimum centering of the image on the diode array. This compensates for

minor changes in the image location due to thermal or electrical drifts. The second use

is to make multiple (2 or 4) samples per resolution element (1 diode width) to ensure

that the digital data satisfy the Nyquist sampling criterion. This is very important when

the ultimate spectral resolution of narrow features is required. Third, the background

adjacent to the spectrum or in the echelle interorder region can be measured. Finally,
comb addition allows the effect of small diode-to-diode sensitivity variations to be min-

imized and eliminates the holes in the data due to a few inoperative channels. When

substepping is used to define the detailed sampling of the spectrum and background, the
data obtained at each step are accumulated into one of up to seven distinct "bins" in the

memory of the onboard computer.

This overview of the flight software features is not exhaustive, but summarizes those

capabilities which are immediately relevant to the acquisition of spectra in accumula-

tion mode. Several items, namely substepping and exposure control, require the

observer to specify certain parameters. These will be described in more detail later in
this Handbook.
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Rapid Readout Mode (sometimes called Direct Downlink)

Rapid Readout Mode (RAPTD) is intended to provide very fast time resolution without

the overhead times associated with Accumulation Mode. The sample time can be
between 50 ms and 12.75 seconds, in increments of 50 milliseconds (i.e., 1 to 255 times

50 ms). At the end of each integration the data are read out, either directly to the TDRSS

satellite or to the spacecraft science data tape recorder. The flight software cannot exe-
cute all of its functions and still allow readouts every 50 ms. When the Rapid Readout

Mode is entered, substepping, data quality checks and exposure control features are

deactivated. The primary factor governing the choice between ACCUM and RAPID is
time resolution. In accumulation mode, the time between exposures can be as short as

about one minute. If higher time resolution is required, if the source is bright enough to

give useful counts in a shorter integration, and if one is willing to sacrifice the flight
software control, then direct downlink is a useful alternative. In RAPID mode, a S_I-

PLE-TIME of less than 0.33 sec requires the use of the 1 Mb data channel (see

Section 4.4 on page 45). Such a high data rate stresses liST's data-handling capabilities
and means that only about 20 minutes of observations can be stored.

Image Mode

Images may be obtained in this mode by deflecting the image of the photocathode over
the 0.11 × 0.11 arcsec focus diodes. The result is a map similar to that obtained during

target acquisition, but without an acquisition being performed. Also, a HAP as part of an

acquisition can cover more of the sky than the LSA subtends at one time by small move-
ments of the telescope, whereas an IMAGE is limited to the 1.74 by 1.74 arcsec area of

the LSA; see Section 4.2 on page 42.

WSCAN and OSCAN Modes

These are really modifications of the ACCUMulation mode designed for higher efficiency

in multiple observations, and they may be requested during Phase II of the proposal pro-

cess. WSCAN obtains a series of spectra within a given order, incrementing by a speci-

fied wavelength increment between each. The result is a spectrum spanning a broader

wavelength range than is possible with a single exposure. OSCAN works with the

echelle, and uses the magnetic deflection of the Digicon to obtain spectra over a range

of ecbelle orders. The grating carrousel is not rotated, and spectra are obtained at equal
values of m%, where m is the echelle order. OSCAR is not ordinarily used for science

observations.
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A proposal for the Hubble Space Telescope is written in two phases. In Phase I, you are

asked to provide the minimum information needed for the Telescope Allocation Com-

mittee and STScl to judge the scientific merit and technical feasibility of what you wish

to do. If your proposal is successful, you will be asked in Phase II to provide the specific
details and parameters that are needed to turn your proposal into a series of commands

that the spacecraft can execute. At the time this Handbook is being written the proce-

dures for submission of lIST proposals are under review; consult the Call for Proposals
for the procedures in effect. In particular, Cycle 5 proposals will ask for time in units of

orbits instead of total spacecraft time and an orbit calculator has been constructed to

allow for planning.

These instructions for completing a Phase I proposal are meant to work with the Cycle 5
Call for Proposals and Phase 1 Proposal Instructions.

v

3.1 Essential questions

The essential questions you must answer in filling out an HSTproposal form are:

• Do I need real-time acquisition for my targets?

• How long will my exposures take?

• Are standard calibrations adequate for my needs?

• Does my science call for any special requirements?

All of these lead up to:

* What is the total number of orbits my program asks for?

The information you provide on the execution of observations is divided into Phase I

and Phase II. Phase I proposal processing takes place before the TAC meets and at that

time you are asked to provide only the information that they need to arrive at a decision

on the scientific merit and feasibility of your proposal. The TAC needs to know, of

course, how much telescope time your program is likely to need. Phase II takes place

only after your proposal is successful and at that time you are required to specify all the

details needed to transform your observational needs into spacecraft commands, and
you must do so within the total spacecraft time that you have been allotted.

The distinction between Phase I and Phase II is somewhat arbitrary and in some cases
the Phase I forms actually prevent you from supplying information (such as the entrance

aperture to be used) that could be helpful in assessing the proposal. The intent is to

make writing the Phase I proposal easier, but you may find that your proposal will be

better if you understand fully the operation and use of the GHRS right from the start. We

encourage you to think in terms of the Phase H requirements even when writing the

Phase I proposal because in most cases that will not require much more work and you
may be able to save some time later on. Thus there is information in this section that is

only entered on the Phase II forms hut which has been included here to provide a picture
of how the instrument works.
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3.2 Creating an Observation Scenario

3.2.1 The Simplest Case: One Spectrum for One Star

Let us assume that in answering the above questions you have decided that an onboard

acquisition will suffice (more on that in a moment), that standard calibrations are ade-

quate, and that you wish to obtain a single spectrum of a single star. By specifying the

resolving power you desire for a particular wavelength, you have, in effect, chosen to
observe with either Side l or Side 2 and with a particular grating (see Chapter 7). This

simplest of observation scenarios then involves one acquisition sequence and one

ACCUM observation. (An IMAGE mode observation may be specified in place of the

ACCUM with no loss of generality. A WSCkN or OSC/_ is just a minor variation on an
ACCUM. See below for RAPIDs.)

The choice of Side 1 or Side 2 for obtaining the spectrum need not necessarily force you

to that Side for the acquisition; for example, you might wish to observe a cool star with

grating G140L on Side 1, but the far ultraviolet flux would be too low to acquire the

object with mirror N1. In that case you can use mirror N2; it is permissible to mix Sides

in a scenario, but there may be a cost in observing time for doing so (see Section 4.1.5. I

on page 38). Some difficult targets may be best acquired with the FOS before they are
observed with the GHRS.

For this simple case this sequence of events can be compared to the Phase I Proposal
Instructions:

• A guide star acquisition.

• The target acquisition with the GHRS.

• The ACCLTM (orIMAGE).

• • Some overhead time to read the observation.

3.2.2 Several Spectra for One Star

If more than one spectrum is desired for the star, the ACCUMs + overheads are repeated

as necessary, bearing in mind the need to reacquire the star at the start of each orbit. The

multiple spectra could be either an assortment of wavelengths or repeats at a single
wavelength to follow an object in time or to improve signal-to-noise. In all cases over-

head time must be added for each separate exposure:

• A guide star acquisition.

• The target acquisition with the GHRS.

• The first ACCUM or IMAGE.

• Some overhead time to read the observation.

• The second ACCUM or IMAGE, followed by an overhead allowance.

• The third ACCUM...

GHRS Instrument Handbook 5.0 23



PhasehWhattheTACSees

3.2.3 Spectraof SeveralStars

Thisinstanceisjustmultipleversionsofthepreviouscasesincechangingstarsrequires
a newvisit,meaning a full guide star acquisition, acquisition of the object into the
GHRS LSA, etc.

3.2.4 RaJPZD Mode Observations

RAPID mode observations can be planned just as for ACCUMs. The overhead time is

added only once at the very end of the whole RAPID sequence.

3.2.5 Adding Calibrations

The only kind of calibration exposure that an observer will ordinarily need is one of the

wavelength calibration lamp. An exposure of 30 to 60 seconds is adequate for almost all
setdngs with the first-order gratings; otherwise the exposure is just another ACCUM.

Note that for most applications the information contained in the -qPYBAL that accompa-

nies each first use of a grating is likely to suffice and a separate wavelength calibration
is superfluous; see Section 4.5 on page 46.

3.3 Specifying Target Acquisition

For most situations, a standard onboard acquisition that automatically centers the

brightest object in the field into the desired aperture is all that is needed. Such a proce-

dure is especially appropriate for isolated point sources that are beyond our solar system
and which have fairly predictable ultraviolet fluxes, i.e., most stars. In other cases, it is

possible to use a variation on the automatic procedure to acquire other objects. For
example, an extended object or some moving objects may be acquired by first automati-

cally centering on a nearby pointlike source and then offsetting to the object of interest.
Some potential problem cases are:

• very bright stars, which can saturate the detectors;

• moving targets, such as planets and their satellites;

• crowded fields, in which the automatic centering procedure might get confused;

• extended objects that do not have a sharply peaked source to center on;

• very faint objects for which few counts would be accumulated in the maximum per-
missible integration time (12.75 see).

• objects that are so variable that their brightness relative to nearby objects may be
unpredictable.

These situations may require an interactive (or real-time) acquisition, although an on-

board acquisition may still work in many cases. In an interactive acquisition, the space-

craft obtains a picture of the target's field with one of the cameras (WFPC2 or FOC) or

with the field mapping capability of the GHRS itself. This picture is relayed immedi-
ately to STScI where the observer is available to study the image and decide where the

telescope should be pointed. Interactive acquisitions are obviously helpful in difficult
situations, but the requirement for real-time contact between the ground and lIST,

together with the need to set aside a block of telescope time for the pointing decision to
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3.3.1

3.3.2

3.3.3

be made, makes interactive acquisitions consume much more spacecraft time than is

needed for a standard onboard acquisition. Interactive acquisitions require special

scheduling and so require greater-than-average work on the part of the planners of

HST's time. Real-time contact with lIST is a limited resource (it cannot exceed 20% of

the total time) which must be reserved for genuine need.

A variation on this procedure is to get the field image two months or so in advance of

the time the spectrum will be obtained. This is called an early acquisition (EARLY ACQ)

and it takes more time than an on-board acquisition but much less than an interactive

acquisition and imposes no burden of real-time contact. The observer must be prepared

to analyze the early acquisition image quickly (within a week or two) if the positions

from it are to be incorporated into the telescope schedule.

If you wish to use either WFPC2 or FOC for early- or interactive acquisitions you must

refer to documents specific to those instruments. Details on the use of the GHRS' imag-

ing capability are provided in the next chapter.

Very Bright Stars

When is a star too bright for an onboard acquisition? In practice we are unaware of any

real need to use interactive acquisition just because a star is very bright. GHRS acquisi-

tions are done with ultraviolet light, so it is the UV flux of the star that matters. There

are no stars too bright to acquire with the attenuated mirror A1, for example. Even with

Side 2 it is not necessary to specify an interactive acquisition for a very bright star if the

BRIGHT=RETURN option is used. Since the few very bright stars which could cause

problems are always the brightest point sources in their immediate area, there is no

apparent reason not to use BRIGHT=RETURN with an onboard acquisition.

Moving Targets

Sophisticated pointing at moving objects (i.e., objects within the solar system) often

requires interactive acquisition to be sure the desired portion of the object's surface is

centered in the observing aperture. There are cases where an on-board acquisition will

suffice, especially if the object is small (essentially point-like) and has a well-deter-

mined orbit. An on-board acquisition can often work well even for a large moving

object like Jupiter by first centering on a small object nearby whose relative position is

well known (one of Jupiter's moons, for example), and then offsetting to the position of

interest on the planetary disk. Solar system astronomers may wish to consult with a

moving-target specialist at STScI before specifying the acquisition mode.

Crowded Fields

Work in crowded fields can usually be done by obtaining an early acquisition, so that

you have an image to work from to specify the object to be observed, an image that has

been obtained with HST's full spatial resolution. The camera observation is usually best
done at about the same wavelength that the spectroscopic observations will be made.

The Point Spread Function (PSF) of the GHRS has been restored by the COSTAR mir-

rors, making it possible to separately observe stars that are very close together. For

example, in an Early Release Observation in April, 1994, two stars in R136a separated

GHRS Instrument Handbook 5.0 25



PhaseI:WhattheTACSees

3.3.4

by only 0.25 arcsec were observed independently. One of these stars was only 0. I arcsec

from a brighter neighbor. This was done by centering on a bright object in the field and

then offsetting to the targets of interest. We suggest that you consult with us if you wish
to work in crowded fields. Also, see Section 8.6. l on page 94.

Extended and Very Faint Objects

For most extended objects, it may be possible to offset from a nearby point source or at

the least the pointing can be specified from an early acquisition image. Interactive

acquisitions should be necessary only rarely. Another method is to acquire the object
with the FOS and then offset to the GHRS' LSA.

In Cycle 5 observers can use a centering option designed expressly for extended objects,
especially uniform ones like the Gallilean satellites of Jupiter. Chapter 4 contains more
information on this option, known as LOCATE = EXTENDED.

3.3.5 Variable Objects

Objects whose ultraviolet brightness varied often caused acquisitions to fail when it was
necessary to specify both BRIGHT and FAINT count limits. The advent of software that

automatically finds the brightest object in the field (BRIGHT=RETURN) obviates that

problem in most cases. A variable object in a crowded field might benefit from an early
acquisition to determine precise coordinates, but an interactive acquisition should gen-
erally be unnecessary.

3.4 Calculating the Exposure Time

3.4.1 Sensitivity

The sensitivity of the GHRS and HST Optical Telescope Assembly (OTA), using the
LSA, has been determined from observations of stars with known ultraviolet fluxes. The

sensitivity is designated as S_, and has units of (counts diode -! sec "1) for each incident

(erg cm "2sec "! A). It varies as a function of wavelength for each grating. You must first

estimate the intrinsic flux of your target and then multiply that by the appropriate value

of S_. to yield an estimate of the count rate to be expected for a particular grating config-

uration at the chosen wavelength. Sensitivity curves for the first-order gratings are pro-

vialed in Section 8.2.3 on page 85 and for the echelles in Section 8.3.1 on page 87.

In the echelle configurations, the sensitivity varies with wavelength across each order.

This behavior is characteristic of all echelle spectrographs, and is called the Blaze Func-

tion. The basic nature of the variation with wavelength is similar for all orders, and can
be parameterized in terms of the product m_,, where m is the order number and _. is the

wavelength (,_). The shape of the blaze function, normalized to a peak value of unity,

and plotted as a function of m_. is shown in Section 8.3.3 on page 91. The sensitivity at

any wavelength in any order can be estimated by multiplying the peak response of that
order by the relative response shown. The blaze function, relative to the center of an

order, falls as low as 0.25 at the end of the free spectral range and its effect should not be
omitted in exposure calculations.
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3.4.2

3.4.3

Reddening

Corrections for ultraviolet extinction in the interstellar medium are included in

Section 8.5 on page 93. These are standard values, and their applicability in specific sit-
uations is left to the judgment of the observer.

Background

There are several potential sources of background counts, including detector dark count,

electrical interference or cross talk with devices either within the GHRS or the space-
craft, and effects caused by the charged particle radiation environment of the HST orbit.

The intrinsic sources of dark count are very small. During "thermal vacuum" testing

prior to launch the detector dark count rates were observed to be approximately 0.0004

counts per diode per second. On-orbit, the background is caused primarily by Cerenkov

radiation bursts induced in the faceplate of the Digicon by cosmic rays. This causes the

actual background to range from 4 x 10-3 to about four times that, depending on the

orbital position of HST. For planning purposes these mean values suffice: 0.011 counts
s -1 for D2 and 0.008 counts s -1 for DI. The counts appear to be randomly distributed in

time, so that the "noise" in the dark count is the square root of the total counts accumu-

lated during the observation. If one is observing very faint objects with low count rates

the background can influence the signal to noise ratio of the data. Formulae for making

quantitative estimates of S/N are given in Section 3.4.5.1 on page 29. At the present
time there are no known sources of interference or cross talk which affect the detector
count rates.

The GHRS is equipped with both hardware (automatic) and software capabilities to rec-

ognize and respond to cosmic ray and trapped particle events. You may invoke the soft-

ware capability by specifying CENSOR = YES on an Exposure Logsheet line in

Phase 11. This causes rejection of individual STEP-TIME segments of data if they

included a specified number of photons arriving within a short (8 Its) interval, as hap-

pens with cosmic rays. Any rejected integration is repeated, so there is no loss of total

exposure time. You should only use this anticoincidence rejection on faint targets, since
on bright targets the interval between actual photon events will be small and real counts

would be rejected. We recommend using CENSOR = YES only for count rates less than

about 0.1 counts per diode per second. The expected dark count reduction is a few tens

of per cent (For more details on CENSOR, see Section 8.6.2 on page 95).

For extremely faint sources for which the expected count rate is well below the expected

dark level, it is possible to use a special commanding option called FLYLIM. This
option, if pertinent to your needs, should be explored with a GHRS Instrument Scientist.

See also Section 8.6.3 on page 97.

An external source of background which can potentially be a problem during the acqui-
sition (and sometimes the observation) of faint targets is geocoronal Lyman-ct. This

problem and what to do about it are discussed in Section 7.4.2 on page 80.

The final cause of background counts is passage through the dip in the Earth's Van Allen

radiation belt called the South Atlantic Anomaly (SAA). SAA passage occurs on 7 of 16

daily orbits of HST. During the most central of these passages, dark count rates increase

about two orders of magnitude, to about 1 count per diode per second. A contour around
the SSA which corresponds to 0.02 cts/s/diode is known and no GHRS observations are
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scheduled when the HST is within this zone. At the time of this writing the SAA con-

tours for the GHRS are being reviewed to allow for more efficient usage.

3.4.4 Scattered light

The presence of stray and scattered light in a spectrograph is an effect which can influ-

ence the planning and execution of an observation, as well as the reduction and interpre-

tation of the data. None of the optical configurations which include first order gratings

has any serious problem with scattered light. The high quality of the imaging optics and

holographic diffraction gratings and the effectiveness of the baffles have successfully
minimized the stray light. On-orbit measurements indicate that it amounts to less than

10 .3 when using the SSA, and at most a few times 10 -3 when using the LSA (these are in
units of the peak intensity).

In the echelle configuration, both the echeile and the cross-dispersers are ruled gratings.

This fact, plus the presence of light from sixteen orders simultaneously on the photo-

cathode, results in a detectable level of background radiation. The irradiance on the pho-
tocathode due to scattered light (measured as count rate per unit area) amounts to a few

percent of the signal in the order. Two factors complicate this effect. The first is a geo-
metrical effect caused by the fact that the science diodes are 400 lain tall, while the
image of the spectrum is only about 55 pan high. Thus about 1/8 of the diode is illumi-

nated by the spectrum+background, while the rest is measuring background, meaning

that a weak background irradiance is multiplied to the point that a significant fraction

(anywhere from 2 to 50%) of the gross count rate on a diode may be due to background.
The measured scattered light background can be calculated from information in

Section 8.3.1 on page 87. It varies significantly with order number.

The second complication arises at the short wavelength ends of the echelle format.

Below a wavelength of about 1800 ,/k with Echelle B (or 1250 A with Echelle A), the
spacing between orders is comparable to the length of the diodes, and it is difficult to

make a clean measurement of a single order. The diode array has four large "comer

diodes" which are long (1 ram) in the direction of the echelle's dispersion, but narrow

(100 gin) in the cross-dispersion direction. These diodes may be used to sample the

interorder background without the problem of contamination by in order light, but they
do not provide any spatial resolution. The HST scheduling system will default to use of

the comer diodes when that is appropriate. At a minimum, the time spent measuring the

background should be about 10% of the time spent on the spectrum. If the goal is to

achieve a very high signal to noise ratio in the net spectrum, it may be necessary to

devote a greater fraction of time to the background measurement. Suggestions for esti-
mating signal to noise ratios are made in the next section.

In order to reduce stray light, there is a shutter over the LSA which automatically closes
whenever the SSA is being used for an observation. There is no shutter on the SSA.

Thus a wavelength calibration exposure obtained with a bright star in the SSA will

result in a combined spectrum of the two because the aperture for the wavelength cali-
bration lamp (SC2) is displaced from the SSA in the same sense as the direction of dis-

persion. Usually you can subtract the stellar spectrum to recover the wavelength
calibration.

More detailed quantitative information on background and scattered light in the GHRS
is provided in Section 8.6.1 on page 94.
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3.4.5

3.4.5.1

Signal-to-noise

There are several factors which influence the signal to noise, including statistical (Pois-

son) noise in the detected spectrum, dark count noise in the detector, scattered light in

the spectrograph, diode to diode gain variations, and granularity in the photocathode

sensitivity. For signal to noise ratios up to approximately 50, statistical fluctuations in

the signal and background will dominate. Diode to diode variations are extremely small,

and are accounted for in the routine calibration procedures. Cathode granularity will

become important if signal to noise greater than 50 is required, and must be treated sep-

arately. For sources observed through the small aperture the sky background should not

contribute significantly to the noise, except, perhaps, when observing at Lyman-o_.

Photon Noise

The following equations may be used to estimate signal to noise ratio, depending on the

relative importance of scattered light and dark count.

Case 1. Neither scattered light nor dark count are important.

Let:

s = signal strength (counts per diode per second) estimated by multiplying the stellar

flux by the sensitivity at the desired wavelength.

t = duration of the observation in seconds. This total time will be divided among the

separate substep bins.

n s= the number of adjacent diodes that will be binned together to produce an effec-

tive resolution element. Usually n s = 1. This is not the merging of substep bins,

but the deliberate averaging to increase signal to noise at the expense of resolu-
tion.

Then

(S/N) 2 = snst

This formula would be appropriate for relatively bright objects observed with any first

order grating, when substep pattern 1, 2, or 3 is used (see Section 8.4 on page 92).

Case 2. Dark count is important, scattered light is not.

Let:

d = dark count rate in counts per diode per second.

Then

(S/N) 2 = ( s/d _sn t
\1 + s/d) s

If the signal is less than about ten times the dark count rate, the factor in parentheses
should be included in the estimate. This formula would be useful if STEP-PATT 5, for

example, were used with a first order grating to measure a faint source (see Section 8.4

on page 92).
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3.4.5.2

Case3. Scatteredlightis important,darkcountisnot.

Let:

f= fraction of time spent measuring the spectrum. (See Section 8.4 on page 92)

b = scattered light as a fraction of the signal in the adjacent orders.

Then

(S/N) 2 = 1.._sns t

This formula gives a good estimate of the performance for observations with the ech-

elles when stepping patterns 6, 7, 8 or 9 are used. This formula assumes that the back-

ground bins are heavily smoothed. Most of the high frequency statistical noise in the

background bins is thus suppressed.

Case 4. Both scattered light and dark count are important.

Let:

nb = number of adjacent diodes to smooth the background bins over before subtract-
ing. Experiments with ground-based data indicate that n b = 10 gives the best
results.

Then

(S/N) 2 =
S2t

,r,+,+, + 1-:IL n,f nb(l-JO] nb(

There are two ways to use these formulae. If you need a certain S/N to do the scientific

analysis, use the appropriate equation to solve for the required exposure time t. Alter-
nately, you can decide to devote a fixed length of time to the observation, and use the

equations to estimate what S/N will be achieved.

Fixed Psttem Noise

The formulae just presented suggest that the signal to noise ratio increases in proportion

to the square root of the exposure time. These relations only hold true until S/N = 50 or

so is reached. At higher signal levels the photocathode granularity described in

Section 4.3 on page 43 will become the limiting factor. Observing standard stars to pro-

vide a precise "flat field" observation is too inefficient, and there is no onboard contin-

uum lamp that illuminates the optics and detectors in exactly the same way as the stellar

spectrum. The best practice is to use the FP-SPLTT option (Section 4.3.1 on page 43).
Rather than merely averaging the four FP-_qPLTT sub-exposures, the data analysis pro-
cedure solves for the two vectors representing photocathode granularity and the spec-

trum. S/N well in excess of 100 has been obtained this way on bright targets.

Achieving exmemely high signal-to-noise (200 or more) is possible by obtaining a num-

ber of spectra, each with FP-SPLTT but at slightly different grating positions. See

Lambert et al. (1994) for a discussion.
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3.4.6 A SimpleExample
Here is a very simple example to illustrate how an integration time may be computed.

Suppose that the goal is to obtain a spectrum of a 13th magnitude B0 star at 1900 ,_,

with the GI60M grating and with a signal-to-noise of 25 per diode in the continuum. In

this case we will assume that this star has not been previously observed in the ultraviolet

so that there is no a priori knowledge of the UV flux.

To be specific, take the star to have a spectral type of BOI, V = 12.89, and

(B- V) = 0.03. The unreddened color for this spectral type is (B- V) 0 = -0.24, so

that E(B- V) = 0.27. The total visual extinction is then 3.1 x 0.27 = 0.84, leading
to a dereddened magnitude of V_ = 12.05. The dereddened flux at 5500 A is then

Fs_00 = 5.4 x 10-14erg s-]cm-2,_ _-I.

What flux can we anticipate at 1900 ,_.? The model atmospheres of Kurucz ( 1979, ApJS,

40, I) predict F19oo/F55oo = 23 for a star with Telf = 25000 K. This leads to a flux of

Figo0 = 1.2 x 10-12erg s-lcm-2,_, -I at 1900 _ for the unreddened star. Reddening will
-0.4 xAt_ 0

diminish this by a factor of 10 , where the absorption at 1900 ,_ can be deter-

mined from the data in Section 8.5 on page 93; the result in this case is A]9o0 = 2.26.
-2_-1We therefore predict this star to have a flux at 1900 ,_, of 1.5 x 10-]3erg s -1 cm

The next step is to determine the detected count rate. For G160M at 1900 A, the sensi-

tivity is S_. = 5.2 x 1011 , in units of counts per second per diode per incident erg s-!
cm-2 ,_-l. This leads to an expected count rate of 7.8 x 10-2counts s-ldiode -I . An inte-

gration time of about 2.25 hours would lead to approximately 625 detected counts per

diode, or the required signal-to-noise of 25. This neglects the effects of dark, which

should be an order-of-magnitude below this count rate.
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CAUTION

The procedures for creating a Phase II proposal are being reviewed and
revised as this is written. We strongly recommend that users check the

Phase II documentation carefully. We also recommend checking on STEIS
at that time for a revised version of this Instrument Handbook.

This chapter supplements the Phase H Proposal Instructions that will be issued for

Cycle 5. You may also wish to consult Phase H Instructions for the Solar System Target
List if your program is to observe solar system objects.

Most users of the GHRS will find that a simple sequence of commands will work most
of the time to obtain the data they desire:

• ACQ inLSA withBRIGHT=RETURN.

• ACQ/PEAKUP to center star in LSA or SSA, whichever is appropriate to the science
observations that follow.

• IMAGE, if you wish to verify target centering or to obtain an image of the object.

• Wavelength calibration exposure, if desired.

• ACCUMs at wavelengths of interest. NO GAP is recommended as a Special Require-
ment in order to ensure the PEAKUP operation is properly applied to the spectro-
scopic exposures.

• ACQ/PEAKUP in the SSA if the previous observation was in the LSA.

• ACCUMs for that different aperture, again with NO GAP.

• Repeat the above as needed for more stars.

Target acquisitions always take place with the LSA because the SSA is too small to

enable a field to be mapped effectively. Additional ACCUMs may be specified after the

first so as to obtain spectra at several wavelengths.

One task of the Instrument Scientists at STScI is to check the feasibility of successful
proposals after the Phase II proposals have been submitted. It is in your interest to

help us with that by using standard and consistent formats for the Phase H propos-

als because that can greatly reduce ambiguity about the intentions of the General

Observer. We suggest the following:

• Follow the examples in the next chapter. The examples usually specify all the

defaults for clarity, which is not strictly necessary, but, like comments in a computer
program, can help to confirm that a procedure conforms to the intents of the
observer.

• Although the submission software does not strictly require it, we ask that you give

the commands in the order just listed: First the acquisition, then embellishments to

the acquisition (PEAKUP, OFFSET, etc.), then an IMAGE and/or wavelength calibra-

tion exposure (if desired), and then the actual science observation (usually an
ACCUM).

v
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Add plenty of comment lines (RPSS imposes a limit) to explain what you want to

have happen so that we can see whether or not your proposal actually accomplishes

that. In particular, please explain briefly how the exposure time was determined.

4.1 Acquisitions

4.1.1

4.1.2

Most objects observed with the GHRS are point sources (stars), and the majority of the

remainder can be observed by first centering on a nearby point source and then offset-

ting to the object of interest. Point sources with accurate coordinates are very, very easy

to acquire with the GHRS: just specify ACQ with BRIGHT=RETURN to have the instru-
ment automatically center on the brightest object found within the LSA.

Initial Pointing

A blind pointing with HST is likely to place the object of interest within 2 arcsec of the

center of the aperture. That accuracy is limited in part by the quality of coordinates pro-
vided by users and partly by errors in the positions of the FGSs relative to the GHRS

apertures (see the FOS Instrument Handbook for a discussion of pointing errors). Using
J2000 coordinates tied to the GSC reference frame can help to reduce the possibility of

a failed acquisition. And don't forget to include proper motions if appropriate and to

check the equinox and epoch of astrometric quantities.

Interactive Acquisitions

We discuss interactive acquisitions (INT ACQ) first in the hope of dissuading you from

using that capability. An INT ACQ requires real-time contact between the ground and

HST. Real-time contact is a limited and expensive resource that should only be used as a

last resort. In almost all cases where an onboard acquisition will not work (because the

object is in a crowded field, or is variable, or is a moving target), it is sufficient to use

EARLY ACQ to get a WFPC2 or FOC image a few weeks in advance of the GHRS

observation. The image can then be analyzed to pinpoint the source to be observed with-

out requiting real-time contact. INT ACQ may be needed in a few instances where the

object changes in its ultraviolet brightness unpredictably. We suggest that you consult

with us before requesting IlCr ACQ.

If an interactive acquisition with the GHRS has been specified, a spiral search will be

run after HST makes its initial pointing. A map of the LSA is made at each dwell point

and each map is then downlinked to STScI in real time and may be viewed almost

immediately in OSS. After the spiral is complete, the telescope remains at its final dwell

point, awaiting instructions. The final 9 (or 25) maps are assembled into a mosaic and

displayed for the observer to identify the target, either from a cursor position or from
calculation of a centroid. The motion needed to center the specified position in the LSA

is computed and uplinked to lIST. The recentering of the target usually takes place about

an orbit after the spiral search, and must be scheduled for a specific time. If you have so

requested in your proposal, an image of the LSA will be made after the recentering so
that you may confirm the position of the target (but additional interaction at that time is

not normally possible).
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4.1.3

4.1.4

EarlyAcquisitions

In an early acquisition (EARLY ACQ), an image of the field of interest is obtained sev-

eral weeks (8 or more) in advance of the spectroscopic observation that the GHRS is to

make. The image may be obtained with WFPC2, with the FOC (especially if an ultravi-
olet image is desired), or with the imaging capability of the GHRS itself. The GHRS is

relatively slow at getting images, so if you wish to map an area much larger than about
2 x 2 arcsec we recommend that you consider WFPC2 or FOC. However, the GHRS has

the capability of obtaining a monochromatic map (see Section 4.2.2 on page 43) in

IMAGE mode, which can be useful in some situations. For any EARLY ACQ, be sure to

note the relationship of the image to the spectroscopic observations as a Special

Requirement (see the first example in the next chapter). Also, you should plan ahead so
that the early acquisition image can be analyzed quickly and the positions measured sent

back to STScI for incorporation into the telescope observing schedule.

Onboard Acquisitions

After the initial pointing, a GHRS onboard target acquisition begins with a spiral search

centered on the field of view. The motions are made by the telescope, and at each point

of the search either a single flux measurement (with 8 science diodes) or a map of the

LSA is made. The default is a 3 x 3 pattern (SEARCH-SIZE=3) of maps in a square

4.6 arcsec on a side. Other options available are a 5 x 5 pattern (SEARCH-SIZE=5),
7.7 arcsec on a side, or a single integration (SEARCH-SIZE=Z) that is 1.74 arcsec

square (this latter option can be useful for obtaining a MAP after an object is centered).
The telescope motions are made in the x and y coordinate system of the GHRS with a

step-size of 1.53 arcsec, not the U2, U3 system of the telescope.

For stars with good coordinates, the default (3 x 3 ) acquisition strategy should suffice,

but the 5 x 5 pattern usually costs little more in total time and guards against minor
coordinate uncertainties (the time needed increases in proportion to [SEARCH-S I Z E] 2,

but the STEP-TIME for an acquisition is usually so low that the total time involved is
small).

You should use ONBOARD ACQ whenever:

• The object is a point source, or

• The object can be reached by offsetting from a nearby object that meets the above
description, or

• An extended object is small enough that LOCATE=EXTENDED will work (see
Section 4.1.5.4 on page 39).

Also, the object to be centered should be the brightest object within the area searched
(about 4.8 x 4.8 arcsec for a 3 x 3 search) but with allowance for about 3 arcsec uncer-

tainty in positioning as well. In other words, you should ensure that your object is the
brightest one that lIST will find within a box whose total size is about 8 x 8 arcsec. Note

that the flux is measured in the ultraviolet (see Section 7.4.1 on page 78).

The items you must specify for the ONBOARD ACQ are:

• The mirror to use. N2 and A2 should suffice for virtually all targets you might wish

to observe. Mirrors N1 or A1 may also be used, especially for spectroscopic obser-

vations that utilize Side 1 (i.e., detector D1). Mirror N2 provides a fiat reflectivity
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4.1.4.1

4.1.4.2

over a broad range of ultraviolet wavelengths (see Section 7.4. ! on page 78). Mirror

A2 has a similar spectrum response but reflects much less light than N2, in order to

acquire bright objects. Both detectors may be active at the same time, so it is permis-

sible to specify mirror N2 for an acquisition to observe with Side 1; this may be

desirable, for example, when observing cool stars. However, doing this may cost

you observing time; see below.

• BRIGHT and FAINT flux limits so the instrument knows when the object has been

found. However, in almost all cases it is better to use BRIGHT=RETURN, which is a

feature that automatically centers the brightest object found. If BRIGHT=RETURN

is specified, any FAINT limit given is ignored.

• The size of the spiral search pattern to execute (SEARCH-SIZE). The default is a

3 x 3 grid (which covers about 4.6 arcsec square), but you may also request a 5 x 5

search over a square 7.7 arcsec on a side.

• Whether or not to record a map of the field at the search points so that you can con-

firm the telescope's pointing after the fact. A MAP is usually unnecessary and so

wastes spacecraft time. At most, a KAP=END-POINT should suffice. Note that such
a MAP occurs after the return to the brightest point in the field but before the object is

centered in the LSA by an ACQ/PEAKUP. To determine the position of an object in

the LSA before spectroscopic observations are begun, we recommend obtaining an

IMAGE on a separate Exposure Logsheet line. The MAP=ALL-POINTS option may

not be used with an ONBOAILD ACQ.

• The offset to apply once the object is centered (if appropriate).

Explicitly Specifying BRIGHT, FAINT, and S_IgP-TIMZ

Explicit BRIGHT and FAINT limits may be specified if you desire, although thereis an
increased risk of a failed acquisition unless you are fairly confident of those fluxes.

Also, a few very bright stars cannot be acquired with Side 2 if an explicit BRIGHT

value is given but they can be acquired automatically with BRIGHT=RETUR.N.

Details on computing BRIGHT and FAINT limits are given in Section 7.1 on page 68.
Please note that although we discourage the use of explicit BRIGHT and FAINT values

unless they are unavoidable, you still need to estimate the target acquisition count rate in

order to ensure that you choose the acquisition mirror correctly and that the STEP-

TIME is determined properly.

• Note that using BRIGHT=RETURN and explicitly specifying BRIGHT and FAINT

limits result in fundamentally different acquisition procedures. If BRIGHT and

FAINT are specified, the acquisition stops as soon as those conditions are met and

the point at which that happened is moved to the center of the LSA. With

BRIGHT=RETURN, the entire spiral search region is sampled and the brightest

object in it determined before any movement is made to center on the target. Both

procedures require the same amount of telescope time because the schedule must
allow for the entire region to be sampled.

Peakups

After the initial acquisition, a peakup helps to precisely center the object in the aperture.

Specifying a ACQ/PEAKUP before starting LSA observations will help to ensure the
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reliability of measured fluxes. A ACQ/PEAKUP before starting SSA observations is

vital for achieving the best throughput with the small aperture.

In the past we recommended using a STEP-TIME value of 1.6 seconds for a ACQ/

PEAKUP, but that is unnecessary for the post-Servicing Mission observatory. We recom-

mend aiming to achieve 1,000 to 10,000 counts in the peak step, as for the acquisition,
but levels as low as 100 will suffice for faint targets.

4.1.5.2

Special Onboard Strategies for Special Situations

Side 2 Acquisitions for Side I Science Observations

There are situations in which an object can be observed satisfactorily with Side 1 but for

which the count rates for acquisition mirrors NI or A1 are extremely low. One possibil-

ity is to increase the exposure time for the acquisition, but the maximum permitted
STEP-TIME is 12.75 seconds. A better option may be to acquire with mirror N2. Both

detectors, D 1 and D2, may be active in the GHRS at the same time, but there is an over-

head involved in making one primary and the other secondary; to go from Side 2 to Side

I, that time is approximately 40 minutes. Whether or not that is a "cost" or not to your

program depends on specific details. It is often the case that an acquisition takes place
over the first orbit, followed by science observations in later orbits. In that case, most or

all of the 40 minutes can take place during the part of the orbit when the target is inac-
cessible. But for CVZ viewing the cost can be real.

Complex Targets

Given the centering algorithm for the GHRS, which we will now describe, you can usu-

ally predict the results of an onboard target acquisition. Stepping, in both the x and y

directions, is done in 0.027 arcsec steps, and on a point source the centering is expected

to be good to within two steps. If the target is extended enough that the fluxes in the

areas which are compared do not change significantly when a step is made, the center-
ing accuracy will be degraded. An example is the case in which there is more than one
source of light within the LSA.

Consider, for instance, two stars which are separated by 1.0 arcsec and for which the

second star is 1 magnitude fainter than the primary star. Exact results will depend on the

position angle between the two stars. The x balancing algorithm begins by placing the

brightest source on the fourth of the eight diodes that are used during an acquisition (the
LSA is imaged onto eight diodes), and moving until the flux on diodes 4 and 5 is bal-

anced. The second star would not affect this balance at all unless its light fell on one of

the same diodes as the primary star. In that case it would affect centering by a fraction of
a diode.

In the y direction the results are different. If the second star is "above" or "below" the

primary, it will "pull" the centering in that direction. In the case described, an extra

source of light 40% as bright as the primary would be present in the upper or lower half

of the LSA. The flux-balancing algorithm would divide the primary image 70-30, rather
than 50-50, with the image displaced towards the half of the LSA which did not contain

the second star. In this case the centering error should be less than 0.1 arcsec. If the LSA

acquisition were to be followed by a slew to the SSA, PEAKUP, and an observation, the

primary object should be successfully centered and observed. More complicated
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images, or sources more similar in brightness may not be suitable for onboard acquisi-

tion. (Note that balancing in the y direction is done before the x direction is balanced.)

Acquiring Faint Targets with the GHRS or FOS

Sometimes a star may be just plain faint to the point where geocoronal Lyman-tx inter-

feres. Some guidance for when this may be a problem is provided in Section 7.4.2 on

page 80. If it is, we recommend that you specify DARK TIME as a special requirement

on the acquisition line on your Phase II form. Doing so constrains the scheduling of

your proposal and is likely to result in greater resource charges to you, so DARK TIME

should only be requested when it is necessary.

Another way to acquire very faint targets reliably is to use the Faint Object Spec-

trograph. This can be especially useful for acquiring extragalactic objects to observe

with grating GI40L because the acquisition mirrors for Side 1 of the GHRS reflect only

far-ultraviolet light and because the maximum permissible integration time per dwell

point is only 12.75 seconds. FOS-assisted acquisitions for the GHRS will be tested in

Cycle 4, so we suggest that you consult us if you wish to explore this option.

Acquiring Extended Sources with the GHRS

There are three classes of extended sources we can consider:

• Objects larger than the LSA that have roughly uniform surface brightness.

• Objects smaller than the LSA with roughly uniform surface brightness.

• Objects with significant structure, some of which is on scales smaller than the LSA.

The first class might be typified by Jupiter, and such objects are impossible to acquire

directly with the GHRS because there is no clear photometric "center" to align on. In

such cases it is necessary to offset from a smaller object which can be centered.

The second class of objects includes the Gallilean satellites of Jupiter, and it is these for

which the LOCATE=EXTENDED acquisition option was written. In a normal LOCATE,

the object to be observed is moved in the x direction until the signal seen by the center
two diodes (of the eight onto which the LSA is imaged) is balanced.

LOCATE=EXTENDED in ACQUISITION mode balances the four left diodes against

the four right-handones to roughly centeran object.In ACQ/PEAKUP mode, the

EXTENDED option allows you to specify that the balancing be done over the central

four, six, or eight diodes (specified as EXTENDED=2, 3, or 4).

The third class of objects can be the most problematic, especially if the target is an

extragalactic one at high latitude. In such cases there may be no nearby star from which

you could offset, but the source itself often contains point-like sources that can be cen-

tered on, in these cases an early acquisition or a pre-existing image is invaluable. The

problem is then one of predicting acquisition count rates; that is treated in Section 7.1

on page 68. You may also wish to consider an acquisition with the FOS, as described in

the previous section.

Offsetting

Even if an ONBOARD ACQuisition will not work for your target, it may still be possible

to acquire a nearby reference star and to then offset to your target. Such an offset will
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happen automatically if the coordinates given for an acquisition exposure are different

from those given for the science exposure. You would normally use two or three lines

on the Phase II Exposure Logsheet to achieve this: acquisition of a reference star, offset,

peakup on the target (if desired), and a science observation. The first line would request

an onboard acquisition of the reference star. It should specify ONBOARD ACQ FOR

<line 2>. Line 2 should then be an ACQ/PEAKUP, and it should specify ONBOARD

ACQ FOR <line 3>. The next line would specify an offset to move from the reference

star to the target, and the final line should be your intended science observation.

You must, of course, include the reference star as one of the objects on your Target

Logsheet. It should be designated xxx-OFFSET, where xxx is the name of the target

object. If desired, you may give the position of your target by using RA-OFF, DEC-

OFF, or XI-OFF, ETA-OFF and FROM relative to the offset star. See the Proposal

Instructions for details and notes on proper units. On the Exposure Logsheet, the Target

Name for lines 1 and 2 are xxx-OFFSET, and in the example above, the Target Name
for line 3 is xxx.

To make a successful offset, the relative positions of the offset star and target must be

very well known - about as well as 1/4 the size of the aperture. (e.g., rms errors of 0.05

arcsec for the SSA.) One way of obtaining such positions is by requesting an V.A.RLY

ACQuisition WFPC2 image, and measuring relative positions from it (at least 2 months

prior to the science observation). The offset positioning accuracy of the lIST is expected

to be very good (of the order of 0.03 to 0.05 arcsec for a 30 arcsec offset), and the accu-

racy of the placement will be primarily determined by the accuracy of your positions.

An offset of more than 30 arcsec may require the telescope to acquire new guide stars,

which would worsen the accuracy of the positioning.

MAPs

The GHRS has the ability to make a MAP of the LSA by raster scanning one or both of

its small focus diodes over the aperture. You may, for example, want a map to confirm

the pointing at the time your spectrum was taken. The default for ONBOARD ACQuisi-

tions is to make no map. If you ask for MAP=END-POINT, you will get a map after the

spiral search has found your target, but before it has been centered (with LOCATE) in

the LSA. If you want a map after the final centering, you can add a single Exposure

Logsheet line in IMAGE mode. An IMAGE may also be obtained of the SSA, which can

be a useful a posteriori means of determining what was observed in a crowded field.

The MAP=ALL-POINTS option may not be used with an onboard acquisition.

Acquisition Parameters -- A Summary

Step 1: Modc=ACQ

• Aperture is always LSA ("2.0").

• MIRROR is usually H2 or H1 unless object is too bright (then use A2 or gl; see

Section 7.1 on page 68). Mirrors A1 and HI may also be used and it is permissible

to acquire with one side (mirror N2, say) and observe with the other (grating G140L,

perhaps), but with a possible cost in time.

• S_RCH-SIZE=3 is the default and adequate almost all the time. Values of 1 or 5

may also be used.

,,qma_f"
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• BRIGHT=RETURN is the default for finding the target and should be used unless

you are forced not to. Do not specify FAINT unless you must specify an explicit

BRIGHT limit. (FAINT is ignored if BRIGHT=RETURN is used.)

• LOCATE: Default is YES for an ONBOARD ACQ and NO for EARLY ACQ or INT

ACQ. We recommend these defaults. Note that LOCATE=EXTENDED is now avail-

able. With an ONBOARD ACQ, LOCATE=NO may be used only if MAP=END-POINT

is specified.

• MAP: The defaults provide for an image to be transmitted to the ground if INT ACQ

or EARLY ACQ is specified. No image is generated by default for an ONBOARD ACQ;

MAP=END-POINT will provide one with the target in the LSA, but it will not be

centered. As we have pointed out, if you wish to determine the actual position of the

object in the LSA before spectroscopic observations are begun, you should obtain an

IMAGE as a separate Exposure Logsheet line and you should not specify a MAP at

all. MAP=ALL-POINTS may not be used with an ONBOARD ACQ.

• The time per exposure can be calculated from

t,xp = (128 x NMA P + NSEARCH ) × STEP-TIME

where NSEARCl t = (SEARCH-SIZE)2 (i.e., 1, 9, or 25), and NMA P is the number

of dwell points mapped (=l if MAP=END-POINT is chosen and =NseARCN if
MAP=ALL-POINTS. MAP=ALL-POINTS can only be used with INT ACQ and

EARLY ACQ.).Please note the value of STEP-TIME you want as a COMMENT on

the Exposure Logsheet.

• Special Requirements are INT ACQ, EARLY ACQ, or ONBOARD ACQ.

Step 2: Mode=ACQ/PEAKUP

• The aperture can be either the LSA ("2.0") or SSA ("0.25"); specify the one to be

used for the science observations that immediately follow.

• Specify the MIRROR as for Mode=ACQ; i.e., N1, A1, N2, or A2 depending on target

brightness.

• The time per exposure can be calculated from

tezp= ApertureX STEP-TIME

wherefApertur e = 102 if the LSA is used and = (SEARCH-SIZE) 2 if the SSA is
used. Note that the throughput of the SSA is half to 2/3 that of the LSA so that in

general you should specify a STEP-TIME that is larger than the one you used for a
PEAKUP in the LSA.

We urge you to be precise and explicit about the way in which you specify an ACQ/
PEAKUP and the order in which observations are to be made. The defaults that apply

to ACQ and ACQ/PEAKUP modes will usually accomplish what you wish, but the

way to be sure is to specify the details. Confusion can arise particularly when a pro-

gram mixes LSA and SSA observations. We would recommend that you do an ACQ
in the first line of the Exposure Logsheet, then on line 2 specify ACQ/PEAKUP and

indicate the lines to which it applies (all of which should use the same aperture).
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Also indicate a NO GAP Special Requirement for that group of lines. Then specify
another ACQ/PEAKUP before starting observations in the other aperture, and again

specify NO GAP to ensure that they are treated as a group.

4.2 Image Mode

The GHRS is, of course, primarily a spectrograph, but it includes useful imaging capa-

bilities, especially because the detectors of the GHRS are blind to much of the visible

light that dominates the flux of most stars. You may wish to request an IMAGE or MAP,

for example, to confirm that the telescope had your object properly centered in the data-

taking aperture before the exposure was taken.

Note the following in using the imaging capability:

• GHRS IMAGEs and MAPs are obtained with the focus diodes (see Section 6.3 on

page 62) at the ends of the array of main science diodes. The focus diodes are

smaller and square, making them more useful for focusing, but at the price of a
lower count rate. The total count rate over the LSA is, of course, unchanged, and it is

that which is predicted with the information in Section 7.1 on page 68. Multiply the

count rate estimated for the regular diodes by approximately 0.3 to get the value

appropriate to the focus diodes when they are centered on the star.

• A MAP is obtained as an integral part of an acquisition whereas an IMAGE is a sepa-

rate observation that may or may not have anything to do with an acquisition. A MAP
with SEARCH-SIZE=3 or 5 is made as the acquisition procedure causes the tele-

scope to make small motions in a square spiral pattern, thereby enabling it to record

a larger portion of the sky than the LSA itself subtends. An IMAGE can only record

the light in the 1.74 x 1.74 arcsec region of the LSA. A single MAP (SEARCH-

SIZE=l) is equivalent to an IMAGE. Note that MAP=ALL-POINTS may not be

used with an ONBOARD ACQ.

• A standard IMAGE will have a pixel spacing of 0.109 arcsec and will cover the

entire LSA aperture of 1.74 x 1.74 arcsec. You may also select pixel spacings of

0.055 or 0.027 arcsec, with proportionately smaller regions of the sky covered in

al6 x 16 (the default) IMAGE. You may also use IMAGE with the SSA.

4.2.1 Image Mode Parameters

• Either the LSA ("2.0") or SSA C0.2 5") may be selected as the aperture. The SSA

is so small that it is generally pointless to image it, although there may be special

cases where IMAGE mode is of use, particularly for confirming pointing in a
crowded field.

• A mirror is the usual choice as optical element. A grating may also be specified - see
below.

• The number of pixels in the x and y directions can be chosen separately and can

range from 1 to 512 pixels. However, a large number of pixels only oversamples the

region of sky subtended by the LSA and does not make the IMAGE include a larger

area. The parameters to specify are NX, NY, DELTA-X, and DELTA-Y, for which the

defaults are 16, 16, 4, and 4, respectively. The product of NX and NY may not exceed

512. An image that is critically sampled in the x direction may be obtained by speci-

fying NX=32, NY=16, DELTA-X=2, and DELTA-Y=4.
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Only the NI mirror intercepts the full beam diameter, meaning that images of the

LSA with the other acquisition mirrors will not yield an accurate Point Spread Func-
tion (PSF).

The PRECISION parameter may be specified as NORMAL (the default) or HIGH.

PRECISION may only be specifiedifDELTA-Y=4. Using PRECISION=HIGH

causes the image to be obtained with only one focus diode instead of two (thereby

eliminating uncertainty over the relative response of the two), but the time per expo-
sure you must list is the same in either case (but using PRECISION=NORMAL takes

less actual time to execute and the differences in response of the diodes are known to

be small).

There are two focus diodes available to raster over the LSA. Thus the total time

needed is the dwell time per pixel (0.2 seconds is the default) times the number of

pixels in the x direction (default is NX=I 6) times the number of y pixels (default is

NY=16), all divided by 2. The maximum permissible dwell time per pixel is 12.75

seconds. (Note that the Phase H Proposal Instructions for Cycle 4 required you to

calculate the total time without dividing by the factor of two. The situation for

Cycle 5 should be confirmed before a value is entered.)

The GHRS as a Slitless Spectrograph

In IMAGE mode you may specify a grating instead of a mirror as the spectrum element

(note that this may not be done in Acquisition Mode). Doing so for a target that emits

primarily in lines can yield the equivalent of using a slitless spectrograph over a very
small portion of the sky (the 1.74 arcsec square region of the LSA). Thus the focus

diodes would be swept over the image of the line to produce a picture that is resolved
spatially in the y direction and spectroscopically in the x direction. This mode of use

would be very slow if all you wanted was the spatial structure of a small object (the

FOC would probably be better), but there might be interesting uses for obtaining spec-

trophotometrically pure, spatially resolved images in the ultraviolet. Please consult us if
you wish to explore this option.

4.3 Accumulation Mode

4.3.1 Optimizing Data Quality

The previous chapter provided the information needed to estimate an exposure time to

achieve a given level of signal-to-noise. We reiterate several factors having to do with

the detectors that must be taken into account to achieve the best data quality. Note that it

is not necessary to explicitly specify these parameters (except for FP-SPLIT) because

the defaults that apply to each mode of operation will automatically invoke them. More-
over, you should not deviate from the defaults without good reason.

The Digicon detectors have faceplates with some granularity (uneven response). The

diodes onto which the faceplate is imaged also have response irregularities and some of

them have been turned off because of misbehavior. Both of these effects are relatively
small but enough to prevent you from obtaining a spectrum with S/N much in excess of

50. They can also produce "glitches" .that can mimic spectrum features. The FP-

SPLIT parameter causes the carrousel to move slightly between each of the two or four
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separate subexposures. The COMB parameter suppresses diode-to-diode gain variations

and allows one to work around the dead diodes. Both features should be used, especially

since they cost little or nothing in exposure time and improve data quality.

The Digicon diodes also undersample the spectrum by about a factor of two. The

parameter STEP-PATT causes electronic motions of the spectrum so as to sample the

spectrum fully. It is possible to STEP-PATT at two samples per diode width, but we

recommend using four samples per diode to yield optimum results, and again at no net

cost. You can always rebin a quarter-stepped spectrum into a half-stepped one during

your data analysis, but the process cannot make a quarter-stepped spectrum out of a

half-stepped one. Deconvolution has worked best with quarter-stepped spectra (the
default); see Gilliland et al. (1992). STEP-PATT also determines the way in which the

background is measured (see Section 8.4 on page 92).

We also remind you to break up long exposures into subexposures that are no longer
than about 5 minutes each, so as to defeat the effects of geomagnetically-induced image

motion. Bear in mind that a 20 minute exposure, for example, specified with FP-

SPLIT=4 will result in four 5-minute exposures.

Summary of Accumulation Mode Parameters

• Specify the aperture as "2.0" (LSA) or "0.2 5" (SSA). The object will automati-

cally be moved to the correct aperture even if the acquisition was into the other. If a

SSA spectroscopic observation follows an LSA spectroscopic observation, we rec-
ommend an ACQ/PEAKUP in the SSA with SEARCH-SIZE=5 before beginning an

ACCUM.

• If wavelength accuracy is needed that exceeds the default (see Section 4.5 on

page 46), then specify WAVE as the target with an aperture of SO2. Get a WAVE

before the ACCUM to which it is to apply.

• Specify the grating to be used, either first-order or echelle. If you wish to force an

echelle observation to be done in an order other than the default, you may do so by

specifying the grating as, for example, ECH-B24, where 24 was the order chosen.

• STEP-PATT may be chosen as a number from 1 to 15, and specific pattern numbers

go with specific spectrograph configurations. We recommend using the default that

pertains to the setup you have chosen. The details of how the substepping is per-

formed and the background measured are given in Section 8.4 on page 92.

• FP-SPLIT=STD is recommended. The default for FP-SPLIT is NO, which will

not yield a spectrum with the best signal-to-noise.

• COMB=FOUR is the default value and is recommended for the best results.

• DOPPLER=DEF is recommended. This activates compensation for the velocity

shifts of astronomical spectra over the course of an orbit but turns it off for internal

exposures.

• STEP-TIRE may be specified as a number from 0.2 to 12.75 seconds, in incre-

ments of 0.05 seconds. STEP-TIRE specifies the length of the individual subspec-

tra that are accumulated to form the final spectrum, and there is no good reason to
not use the default of 0.2 sec.

• The CENSOR parameter may also be specified. The default is NO, which is appropri-

ate in almost all cases. If CENSOR=YES is used, individual subspectra (of duration
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STEP-TIME, which should be used at the default value of 0.2s) are examined

onboard the spacecraft and are discarded if multiple counts have occurred within a

8 Its interval. This allows for the lowering of background noise in cases where the

object being observed is very faint, i.e., less than about 0.1 counts per second per

diode. Rejected exposures are repeated by the GHRS, leading to a longer total

elapsed time for the observation, but only by about 2%. Since the observation must

end at a specific time that is predetermined in the spacecraft schedule, using CEN-

SOR involves a risk of losing all the data if too many subexposures are rejected. This

is guarded against by adding some padding time in the observation planning process
(that is done at STScI and does not affect the exposure time you estimate). See

Section 8.6.2 on page 95 for more information on CENSOR.

A special commanding option called FLYLIM can also be used to reject noise in

cases where the object is substantially fainter than the background. Please consult

with us if you wish to explore this possibility.

If you have any doubts about the manner in which your program will be executed

(which spectra first, whether a peakup is done, etc.), remove the ambiguity by

explicitly indicating the nature and order of the exposures on the Exposure

Logsheet.

WSCANmode

Use of WSCAN can result in a spectrum covering a broader total bandpass than is possi-

ble with a single exposure. All the parameters listed above for an ACCUM exposure are

available in WSCAN mode. The most important parameter to specify is WAVE-STEP,

which is the spacing (in/%,ngstroms) between each subexposure. If WAVE-STEP=DEF

is specified, the central wavelengths of the separate exposures will be equally spaced so

as to cover the range of wavelengths that you specify, with at least 20% overlap from

one subspectrum to the next.

You may also explicitly give a WAVE-STEP value. If km_. is the central wavelength of

the shortest-wavelength exposure, and 2%,,ax is the central wavelength of the longest-

wavelength exposure, then choose these values in concert with WAVE-STEP so as to

yield an integral number of WAVE-STEPs between _',,i, and _',,ax.

osc_J_mode

This mode makes it possible to scan across echelle orders at a fixed value of m_,, where

m is the order number and _ is the wavelength. It is rare that adjacent orders both have

features of astrophysical interest and so this mode is primarily used for calibrations and

not for science observations. If you do use this mode, all the parameters of an ACCUM
observation are available.

4.4 Rapid Readout Mode

This mode is sometimes referred to as Direct Downlink. A normal ACCUM exposure is

the best way to get a good spectrum because all the features of the spectrograph are

available to you: automatic compensation for the motion of the spacecraft along the

line-of-sight, rejection of high-noise subspectra with CENSOR, use of FP-SPLIT,
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COMB, and STEP-PATT to optimize data quality, and so on. However, there are times

when ACCUM cannot obtain successive spectra as quickly as is needed to probe a partic-

ular phenomenon.

In those cases you can use RAPID mode. The data are read from the detector at the end

of each short integration, either to the science tape recorder on lIST or through TDRSS

to the ground. Data obtained in RAPID mode require special handling by the observer
to correct for some of the effects (especially doppler shifts) that are automatically com-

pensated for in ACCUM mode.

As for an ACCUM, you should specify the science aperture and the spectral element. You

may also choose to observe WAVE as target to get a wavelength calibration. The only

other parameter you may specify is SAMPLE-TIME, which is the length of each sepa-
rate exposure that is read to the ground. The default S2LMPLE-TIME is also the mini-

mum, 0.05 seconds. SAMPLE-TIME may be incremented in 0.05 second values up to a

maximum of 12.75 seconds. Use of a very short SAMPLE-TIME and/or use of RAPID

mode for extended periods can cause scheduling problems because of the very high data

volumes that are generated. In particular, a SAMPLE-TIME of less than 0.33 sec

records data at the 1 Mb rate and so can proceed for no more than about 20 minutes

before filling the onboard tape recorder. A SAMPLE-TIME of 0.33 seconds or more, but
less than 2.57 seconds, results in a 32k data rate, while a SAMPLE-TIRE in excess of

2.57 seconds results in a 4k data rate. This latter low rate can be sustained almost indef-

initely.

4.5 The Precision and Accuracy of Standard Calibrations

Our job of calibrating the GHRS on a routine basis ensures that you can rely on the

wavelength scale and flux calibration that you are provided. The quality of the flux cali-

bration is limited primarily by innate factors that are present in tying together different

photometric systems. The GHRS has proved to be a reliable instrument whose response
has not been seen to vary with time. Routine calibrations will deliver absolute fluxes

accurate to 10% and photometrically precise to better than 1% with the LSA I. In other

words, we monitor the sensitivity of the GHRS on a regular basis (approximately every

four months) and have not seen changes in the count rates for the standard stars that

exceed 1%, once the effects of telescope focus are taken into account. However, there

are undoubtedly systematic effects present that preclude knowing absolute fluxes to bet-

ter than 5 to 10%. The solid performance of the GHRS means that it is impossible to

improve substantially on the flux-calibration by obtaining observations on your own.
The GHRS dark count is so low for most objects as to be irrelevant (but see the discus-

sion on CENSOR in Section 8.6.2 on page 95) and high signal-to-noise can be obtained

without the need for flat-field exposures.

The one area in which you might wish to consider a special calibration is for the wave-

length scale. However, even here the default wavelength scale provided by the pipeline

I. Starting in Cycle4, the fluxes from the data reduction pipeline in the ultraviolet can differ sys-
tematically from earlier values by up to 1% because of the use of models of the white dwarf
G 191B2B as the fundamental standard.
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data reduction system has been improved to take account of several systematic effects.

As a result those wavelengths are good to better than 1 km s1 for the first-order grat-
ings, except at the shortest wavelengths (Ly-a). For Echelle-B, the rms scatter in fitted

wavelengths is about 0.6 km s l. These values are uncertainties for the wavelength zero
point of a spectrum; the dispersion of spectra differ negligibly from the routine values.

Our specifications for routine wavelength calibration are to have them good to only
about one diode rms, estimated as follows:

• First, errors in carrousel positioning can amount to 0.2 diode.

• Second, if a wavelength calibration is not available for the precise carrousel position
you select then it is necessary to interpolate in the dispersion constants, and that can
lead to an error of 0.5 diode.

• Third, changing temperatures within the spectrograph can lead to wavelength shifts
of about 0.5 diode over the course of an orbit.

• Finally, geomagnetically-inducod image motion can lead to oscillations of up to 1
diode peak-to-peak amplitude over half an orbit.

• The net result is that about 1 1/4 diode accuracy is what is routinely expected.

Precision of about 0.2 diode can be achieved by requesting that an ACC[_ with a TAR-

GET of WAVE be made immediately before your science exposure. Nearly the same pre-

cision can be realized by using information in the SPYBAL exposures that are

automatically taken at the start of a sequence of observations with a new grating. Also,

you should specify NO GAP for the exposure lines to which the WAVE pertains. See

Chapter 5 for an example. Bear in mind that the several separate exposures you list may

not necessarily be obtained one right after the other (unless you so specify in Phase II),

so that separate WAVE calibrations may be needed.

We also recommend breaking long exposures into subexposures that are no longer than

about 5 minutes each. This is done to ensure that geomagnetically-induced image
motion will not degrade the quality of your data. Any shifts in the different spectra of

the same object can generally be determined by cross-correlating them during your data
analysis.

4.6 Other Considerations

There are many factors that may influence how you specify the manner in which your

observations should be obtained. Here we mention two that have arisen in particular

instances. The first has to do with Targets of Opportunity (TOOs) and/or coordinated

observations. The Call for Proposals should be consulted for information about propos-
ing to observe Targets of Opportunity with lIST and GHRS. Observations of TOOs

often need to be coordinated with other satellites or ground-based observatories. The

long lead times for planning lIST observations, even for TOOs, are an impediment to

that coordination. We encourage you to explain in detail exactly what is or is not
required for the successful completion of your program.

Another problem that can occur arises when a science program specifies a large number
of separate GHRS exposures. The problem is caused by the relatively small amount of

memory available on lIST in which to store GHRS commands. It is usually possible to
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break up such a program so that the separate exposures are not all together, but occa-

sionally the science goals cannot allow that and some other compromise must be made.

Roughly speaking, about 40 total spectra can be scheduled in a single block (a WSC,Z_Jq

with n set-points counts as, exposures and an FP-SPLIT counts as 2 or 4). Once that
number is exceeded the remaining observations must be scheduled in a new block of

time, and that means a new target acquisition will be needed, with the concomitant over-
head time.
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We present in this chapter several examples of how to actually execute proposals to

achieve what you want, since abstract instructions are, at best, difficult to follow. The

examples are shown separately, partly for formatting reasons, since they require a side-

ways orientation of the page, and partly to assemble them in one place for easy refer-
ence.

We begin by showing how the first entry on the next page would look as input to RPSS.

The remainder of this chapter shows how Phase II proposals look to us. In most of these

examples, the various parameters have been explicitly listed for clarity, even though

they often correspond to the defaults that would apply anyway.

We remind you that any if differences exist between this document and, say, the Phase II

Proposal Instructions, the one with the most recent date of issue should be followed or

you should consult us to resolve the discrepancy.

exposure_logsheet:

i inenum: 1.0

targname : MU-COL

config : HRS

opmode : ACQ

aperture 2.0

sp_element : MIRROR-A2

num_exp : 1

time per exp: I0.75M

f luxntun_l : 1

priority: 1

param I: SEARCH-SIZE=5,

param_2 : MAP=ALL-POINTS

req__l: CYCLE 5/ I-2;

reci_2: EARLY ACQ FOR 2.0

cormnent_l : STEP-TIME=0.2S ;

comment_2: EXPECT 21000 COUNTS IN STEP-TIME

!

i inenum: 2.0

targname : MU-COL

conf ig : HRS

opmode : ACCUM

aperture : 2.0

sp_element : ECH-B

num_exp : 1

time__per_exp : 4.8S

f luxnum_l : 1

priority: 1

param_ 1 : STEP- PATT= 13
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6.1 The HST Focal Plane and the GHRS Apertures

We provide here a description of the instrument in largely pictorial terms. More illustra-
tions and full technical descriptions of the GI-IRS may be found in the references (see

Section 9.2 on page 104).

v

Figure 6-1. The Hubble Space Telescope and its components, with the
locations of important operational elements shown.
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Figure 6-2. The focal plane of HST and the definitions of the V2, V3 and U2,
U3 coordinate systems of the spacecraft.
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_SC1

+

+V2

Figure 6-3. Locations of GHRS apertures relative to spacecraft axes. Note
that the sense of the x and y motions are shown by the arrows, but that the
zero point for each aperture (SSA and LSA) is located at its center. COSTAR
does not, of course, chan_le the layout of the entrance apertures, but it does
alter the way that the sky =s imaged onto the focal plane. The sense is easy
to remember. the COSTAR mirrors invert the sense of the original image,

which means that the signs of motions in both coordinates, V2 and V3, (or U2
and U3) are reversed.
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Figure 6-4. Optical schematic of the GHRS.
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6.2 Gratings and Optical Elements

TABLE 6-1 Properties of GHRS Gratings

Grooves
per mm

Blaze
AngleName

G i 40L 600 2.6 i

G i 40M 600O 23 1

G 160M 4960 19 1

G200M 4320

360OG270M

26

28

Order of
use

Angle of
Incidence

9.0- 10.3

26- 38

21 - 33

23 - 34

27 - 38

Diffraction
Angle

-5.3 - -4.0

II -24

14 - 27

17 -28

20 -32

Deviation

Angle

14.25

14.25

6.25

6.25

6.25

Detector

D!

D!

D2

D2

D2

Ech-A 316 63.4 33 - 53 68 - 74 54 - 61 13.25 D1

Ech-B 316 63.4 17 - 33 63 - 72 58 -66 5.75 D2

CD-A 194.6 0.75 l D!

CD-B 85.7 0.54 1 D2

Note that the "CD" gratings are cross-dispersers for the echelles. CD-A has a focal

length of 1460 mm and CD-B has a focal length of 1340 ram. Note also that the "M"

gratings are holographic and that the blaze angle quoted formally is that which correctly

predicts the center of the wavelength region the grating is optimized for. G140L is a

ruled grating. "Ech-A" and "Ech-B" refer to two modes of operation that use the same

echelle grating but different cross-dispersers and detectors.

TABLE 6-2 Properties of Other GHRS Optical Components

Name

LSA = "2.0"

SSA = "0.2 5"

Collimator

Mirror N2 a

Mirror A2

Mirror Nl

Clear Aperture Focal Length
(mm) (ram) Detector

0.559 D1, D2

0.067 D 1, D2

80 1850 DI, D2

80 D2

20 D2

80 DI

Mirror AI 20 DI

Cam-A 84 1425 DI

Cam-B 86 1350 D2

D1 22 x 28

D2 22 x 28

a. Mirror N2 is actually "D" shaped, being a circle with a small slice offone
side. It is about 60 x 80 ram.
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Figure 6-5. Schematic diagram of GHRS' acquisition optics. The =main
acquisition mirror" is N2.
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v

6.3 The Digicon Detectors

HIGH VOLTAGE
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Figure 6-6. Cutaway view of a Digicon.
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ASSEM8LY
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COn. MAGN(TIC O(FLgCTION

SHIELD COILS

Figure 6-7. Cross-sectional view of a Digicon and views of its faceplate and
diode arrays.
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Figure 6-8. A view from the cross-dispersers toward the Digicon detectors to
illustrate the senses of x and y motions and of increasing wavelength.
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Figure 6-9. A detailed layout of the diodes in the Digicon detectors. Note
the 6 large "comer diodes" and the 6 "focus diodes" (numbers 4, 5, and 6, for
example).
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7.1 Predicting Target Acquisition Count Rates for Stars

We have calculated GHRS target acquisition count rates for the spectra of a subset of

the 175 stars contained in the Bruzual-Persson-Gunn-Stryker (BPGS) Library of Stellar

Spectra by using calcphot, a task in the synphot package in stsdas. GHRS target

acquisition count rates for objects similar to those in the BPGS catalog can be predicted

by following the procedures described here. Constraints on the value of STEP-TIME

are discussed. Please note that the values tabulated are the total count rate for a star, and

that the count rate for a particular diode will depend on that portion of the Point Spread

Function that strikes it. That can influence the degree, for example, to which the paired-

pulse correction applies. However, the acquisition procedure sums the counts over the

eight science diodes upon which the LSA is imaged, so for most objects these values

may be used straightforwardly.

Do not forget to reduce these values by a factor of 0.3 if the focus diodes are being used

for an IMAGE; this is because of the reduced area of the focus diodes compared to using

eight normal diodes for an acquisition. This factor applies to when a focus diode is cen-

tered on a point source.

The flux distributions in the BPGS catalog include ultraviolet wavelengths and can be

used for planning GHRS target acquisitions. Each spectrum in the catalog was dered-

dened and scaled to V0 = 0.0. The calcphot task in the synphot package of stsdas was
used to convolve the catalog flux distributions with the effective areas of the acquisition

mirrors. Table 7-1 on page 74 contains columns giving the BPGS catalog object name,

spectral type, (B-V) o, count rate for the acquisition mirror with no reddening, and scale

factors (per unit magnitude) indicating the relative count rate observed at given amounts
of reddening compared to the count rate with no reddening.

To use Table 7-1 to predict target acquisition count rates:

• Determine the intrinsic color, (B - V)o, and magnitude, V0, of your object as well as
its color excess, E(B - I/).

• Find an entry in Table 7-1 that has similar spectral characteristics to your object (by

spectral type or (B - V)0 and note that luminosity class is important for the coolest

stars). The table is sorted by increasing (B- V)O. Make sure you pick from the col-
urnn corresponding to the acquisition mirror that you plan to use.

• Scale the predicted count rate found in the previous step by the ratio of apparent

-o.4vo
brightness of your object to an object with Vo = 0.0, i.e., multiply by l0

• To obtain the scale factor by which the unreddened count rate will be reduced for an

amount of reddening appropriate to your object, multiply the count rate from the
• . scale facfor x E(B- V)

previous step by this factor: lO

• The GHRS detectors are nonlinear at high count rates: this phenomenon is referred
to as the "dead-time" or "paired-pulse" effect. Consequently, the predicted count

rate from the previous step must be reduced to yield the actual count rate that GHRS

will measure. Multiply the count rate you just determined by the "fraction detected"

value determined from Figure 2 on page 71 to obtain the final predicted count rate.

• This final value is probably reliable to within a factor of two, which is adequate for

acquisition purposes in almost all instances.

V
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7.1.1 AlternateMethodfor PredictingTargetAcquisitionCountRates

Figure7-1 on page 70 shows mean predicted count rates as a function of (B-100

color for the four acquisition mirrors. Also shown are the fits to the predicted count rates

for various amounts of reddening. The label for each curve represents the color excess,

E(B - V), applied to the spectra.

You can estimate target acquisition count rates using the plots instead of Table 7-1:

• Determine the intrinsic color and magnitude of your object as well as its color

excess.

• Read from the Figures (depending on the mirror used) the predicted count rate.

• Scale the predicted count rate by the ratio of apparent brightness of your object to an

object with zero magnitude.

• Use Figure 2 on page 71 to correct for the "paired-pulse" effect.

7.1.2 Two Examples

First, suppose you want to observe Ia Col, which has the following properties:

Name Sp. Type.

IXColumbae O9V

V B- V E(B- 1/')

5.16 --0.29 0.01

Using the table, you would see that HR 8023, an 06 star with (B - 10 = -0.313 is the
closest match, giving a predicted count rate for the A2 mirror of 1.3 x 107counts s -1 for

a V 0 = 0 star. Multiplying this count rate by 10"0"4x5"13gives 1.2 x 105 counts s-1. Red-

dening will decrease the counts slightly; calculation of the scale factor indicates that you
should multiply by 0.93, giving a new count rate of 1.1 x 105 counts s"l. The dead-time

correction factor estimates that only 83% of those counts will be detected, so one would

expect approximately 941300 counts s"1with this star. In fact, when Ix Col was observed

early in Cycle 4, 19,600 counts were obtained in 0.2 seconds with the A2 mirror, which
works out to 98,000 counts s"1, which is within 5% of the calculated value.

Second, consider a very red star such as Aldebaran:

Name

c¢Tauri

Sp. Type. V B- V E(B- V)

K5III 0.84 1.54 0.00

Using the table, you would see that BD-I°3113 has a similar spectral.type (KSIII) and
color (1.61). The calculated count rate for mirror A2 is then 1.6 x l0 s counts per sec-

ond. The adjustment for apparent magnitude is 10 -0.4× o.84, which yields a count rate of

530 per second, or 210 in 0.2 seconds. Early in Cycle 4 a Tau was acquired with mirror
A2 and the count rate seen was 246 in 0.2 seconds, within 15% of the predicted value.
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Figure 7-2. Fraction of counts detected as a function of the true count rate,

i.e., before the paired pulse correction.

7.2 Constraints on the Value of the STEP-TIME Parameter

Once you have the predicted countrate, you then need to extract the piece of information
required to plan your target acquisition: STEP-TIME. This is necessary to calculate the

time per exposure that is entered on the proposal logsheet. The goal is to have GHRS

see 103 to 104 counts at the peak dwell point of the spiral search for either an acquisition

or a peakup. A minimum of 100 counts are needed to have a chance at a successful tar-

get acquisition. The STEP-TIME then is just the number of counts desired (103 to 105,

but at least 100) divided by the predicted count rate. Remember, however, that the mini-

mum STEP-TIME permitted is 0.2 seconds. Also bear in mind that the STEP-TIME

may not exceed 12.75 seconds.

To avoid the possibility of a failed target acquisition, it is important that the combination

of your target flux and the acquisition mirror used should not result in the eight science

diodes used for the target acquisition seeing more than a total of about 65,000 counts

(the number accommodated in a 16 bit register) in a given STEP-TI_. Counting more

than 65,000 counts effectively causes the register to wrap back to zero and thus con-

founds the target acquisition algorithm. This problem is avoided ff BRIGRT-RETURN

is specified because a 32-bit on-board register is used. If a BRIGHT limit is explicitly

given, the register that holds it is limited to 16 bits.

Figure 7-3 and Figure 7-4are provided to allow for a visual check of potential problems

arising from the choice of STEP-TIME. These Figures show the constraints placed on

using a particular mirror and STEP-TIME. Figure 7-4 is analogous for the Side 1 mir-
rors.
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Figure 7-3. Target acquisition constraints for the Side 2 mirrors N2 and A2.

N2R:

N2-0.2:

A2-0.2:

Constraintsand RestrictionsDocument (CARD) upper limit foruse of Mirror-N2.Observing

objects that are bluer and brighter than indicated by this line would result in degraded perfor-

mance and possible damage to the instrument. Brighter and bluer objects should be acquired with
mirrors A2 or A1.

GHRS willcount65,000 countsin0.2 secondswiththeN2 mirrorforobjectson thiscontour.To

theleftof thiscurve,more than65,000 countswillbe detectedleadingtoa probablefailureto

acquire the object if a BRIGHT value is specified. However, use of BRIGHT=RETURN will

result in a satisfactory acquisition.

GHRS will count 65,000 counts in 0.2 seconds with the A2 mirror for objects on this contour. To

the left of this curve, more than 65,000 counts will be detected leading to a probable failure to

acquire the object if a BRIGHT value is specified. However, use of BRZGHT=RETURN will

result in a satisfactory acquisition.
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Figure 7-4. Target acquisition constraints for the Side 1 mirrors N1 and A1.

N1R:

NI-0.2:

Constraints and Restrictions Document (CARD) upper limit for use of Mirror-N 1. Observing
objects that are bluer and brighter than indicated by this line would result in degraded perfor-
mance and possible damage to the instrument. Brighter and bluer objects should be acquired with
mirrors A2 or A1.

GHRS will count 65,000 counts in 0.2 seconds with the N1 mirror for objects on this contour. To
the left of this curve, more than 65,000 counts will be detected leading to a probable failure to

acquire the object if a BRIGHT value is specified. However, use of BRIGHT=RETURN will
result in a satisfactory acquisition.!

Note that no constraints apply to the use of the A1 mirror, i.e., no objects are too bright.
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7.3 Acquisition Count Rates for Extended Objects

Chapter 4 mentions acquisition methodologies for extended objects, and, in particular,

the use of the EXTENDED optional parameter. In this section we provide some guidance

on predicting the count rates to be expected during an acquisition of an extended object,

especially one beyond our own Galaxy. The renewed availability of Side 1 of the GHRS

and its G140L grating make it possible to get high-quality spectra of faint objects effi-

ciently.

Whenever possible, we recommend that faint objects be acquired by offsetting from a

nearby and brighter point source. If accurate coordinates are used this method should be

reliable. However, such objects are not always present next to targets of astrophysical

interest. Also, obtaining a good astrometric position of an extended source can be pre-

vented by its large saturated area on the photographic plates upon which the Guide Star

Catalog is based. In these cases a direct target acquisition will need to be attempted, and

it should succeed if the object provides enough ultraviolet photons. The procedure

closely follows that for point sources just described:

• Find a star in Table 7-1 with a spectral energy distribution like that of your object, or

consult the IUE Atlas of Star-Forming Galaxies, by Kinney et al. (1993, ApJS, 86,

5). This publication provides representative spectra of many classes of galaxies and

compares their shapes to ones of stellar spectra (whence the "spectral types" listed).

• Estimate the flux that will fall within the LSA from either Table 7-1 or Table 7-2 on

page 77, as appropriate.

• Calculate STEP-TIME in the same manner as for stars. If necessary, you may use

mirror N2 on Side 2 for your acquisition, even if Side 1 is being used to observe, but

doing so will add about 40 minutes of overhead time.

• If your object does not fall within these categories, please consult us.

v
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TABLE 7-2

"Spectral

Type" N2 A1

o3_6v

o4_9i

o5_6iii

o7_bOv

o9_bOiv

b0_2i

b0_2iii

b2_4v

b2_5iv

b3_5i

b3_6iii

b5_8v

b6_9i

b7_9iii

b8_9iv

f2_7iv

f2_8i

f5_7v

f6iii

fS_9v

g0_2iv

g0_3i

g0_5iii

g0_5v

g5_8i

g5_8iv

g5_k0iii

g6_9v

g8_kliv

k0_lv

kO_2iii

kl_3i

k2_3v

k2iii

k3iii

k4 5iii

k5_mOv

kS_mSi

k7_m3iii

8.843E9

8.1MTE9

8.935E9

7.407E9

6.413E9

4.314E9

5.144E9

2.889E9

2.754E9

1.694E9

2.344E9

1.713E9

9.689E8

8.700E8

9.701 E8

1.007E8

4.536E7

1.079E8

9.009E7

6.664E7

4.451E7

1.971E7

3.349E7

5.372E7

4.802E6

2.123E7

6.969E6

2.588E7

8.008E6

1.307E7

5.918E6

2.497E6

9.035E6

2.092E6

1.157E6

5.490E5

2.607E6

9.714E5

5.420E5

count rate for mirror

A2 N1

2.116E7

1.934E7

2.140E7

1.771 E7

1.533E7

1.005E7

1.214E7

6.765E6

6.444E6

3.836E6

5.448E6

3.952E6

2.187E6

1.975E6

2.216E6

2.108E5

9.480E4

2.254E5

1.862E5

1.367E5

9.041E4

4.015E4

6.822E4

1.095E5

9.721E3

4.242E4

1.384E4

5.189FA

1.583E4

2.606FA

1.165E4

5.057E3

1.800F__

4.107E3

2.266E3

1.085E3

5.167E3

1.976E3

1.081E3

Predicted count rates for non-stellar objects

reddening reduction factor a

3.990E8

3.731E8

3.961 E8

3.282E8

2.931 E8

1.372E8

1.908E8

1.037E8

9.673E7

3.581E7

7.404E7

4.849E7

2.021 E7

1.845E7

2.337E7

2.968E4

1.403E4

1.782E4

8.586E2

3.996E3

2.726E5

2.427E5

2.687E5

2.065E5

1.784E5

9.530E4

1.231E5

7.131FA

6.712FA

3.042E4

5.400F.A

3.716E4

1.765FA

1.663E4

1.984FA

1.206E2

5.634E1

3.614E2

N2 A2

-3.059 -3. I 12

-3.054 -3. !09

-3.068 -3.121

-3.028 -3.086

-3.012 -3.072

-2.949 -3.005

-2.994 -3.05 I

-2.964 -3.02 I

-2.960 -3.017

-2.859 -2.910

-2.943 -2.998

-2.922 -2.976

-2.831 -2.882

-2.867 -2.918

-2.889 -2.941

-2.547 -2.580

-2.535 -2.569

-2.538 -2.571

-2.499 -2.526

-2.460 -2.484

-2.415 -2.434

-2.429 -2.444

-2.431 -2.450

-2.428 -2.449

-2.399 -2.414

-2.344 -2.354

-2.320 -2.330

-2.360 -2.372

-2.297 -2.304

-2.337 -2.348

-2.285 -2.290

-2.397 -2.411

-2.327 -2.336

-2.268 -2.273

-2.259 -2.264

-2.290 -2.296

-2.304 -2.311

-2.413 -2.426

-2.323 -2.330

a. use factorfto reduce count rate by l0/xE(B- v)

N1

-3.362

-3.380

-3.364

-3,388

-3.396

-3.378

-3.388

-3.364

-3.367

-3.328

-3.353

-3.337

-3.313

-3.305

-3.316

-3.201

-3.201

-3.238

-3.830

-3.245

-3.604

A1

-3.134

-3.133

-3.136

-3.129

-3.125

-3.113

-3.122

-3.116

-3.115

-3.095

-3.112

-3.108

-3.089

-3.098

-3.102

-3.043

-3.041

GHRS Instrument Handbook 5.0 77



Target Acquisition Reference Information

7.4 Other Acquisition Information

7.4.1 Effective Areas of the Acquisition Mirrors

Table 7-3 on page 79 lists the effective areas of the four acquisition mirrors (in cm 2 ) as

a function of wavelength, to use to predict acquisition count rates. These values are

those from the Science Verification Report for the GHRS, adjusted by the observed ratio

of post- to pre-COSTAR sensitivities (see Section 8.1 on page 82). Note that AI and NI

may only be used with detector D1 and A2 and N2 with detector D2.

Also note that the proper use of this table requires compensation for the different ener-

gies of photons of different wavelengths, hence the last column, which is in picoergs per

photon.

E
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<C

:>

L)
(1)
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N2

J i , I , I , , I , , , , I , , , , I , , , ,
1500 2000 2500 3000

Wavelength (Angstroms)

Figure 7-5. Relative sensitivities of the GHRS acquisition mirrors. The effec-

tive areas shown are from Table 7-3 on page 79.
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TABLE 7-3. Effective areas of the four GHRS acquisition mirrors

Wavelength (A)

1100

1150

1200

1250

1300

1350

1400

1450

1500

A1

Effective Area (cm 2)

N2

0.175

23.36

54.18

76.50

96.22

97.03

96.88

105.46

N1 A2

0.0025 0.00085

4.89 0.12

16.79 0.29

28.54 0.34

34.10 0.37

36.64 0.34

36.05 0.28

35.35 0.28

35.49 0.27

34.43 0.29

30.18 0.31

29.37 0.37

25.91 0.44

18.11 0.56

11.82 0.68

7.38 0.74

3.04 0.79

1.04 1.04

0.55 1.04

0.30 1.08

0.16 1.13

1.43

1.55

1.75

1.87

1.85

1.83

1.68

1.50

0.76

0.58

0.38

0.21

0.14

113.43

perg ,
photon"

18.1

17.3

16.6

15.9

15.3

14.7

14.2

13.7

13.2

1550 0.000172 133.84 12.8

1600 0.00298 155.76 12.4

1650 0.0317 165.92 12.0

1700 0.0843 176.10 11.7

0.09231750 216.91

259.651800

1850

0.0680

11.4

11.0

0.0261 281.80 10.7

1900 0.0094 302.40 10.5

1950 0.0021 362.78 10.2

2000 363.32 9.93

2050 406.51 9.69

2100 449.71 9.46

2200 594.61 9.03

2300 663.74 8.64

2400 776.52 8.28

2500 847.76 7.95

2600 854.42 7.64

2700 866.65 7.36

2800 813.29 7.09

2900 754.81 6.85

3000 398.89 6.62

3100 309.31 6.41

3200 194.15 6.21

3300 116.67 6.02

3400 80. 5.84
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7.4.2 Geocoronal Lyman-(x Background

The acquisition mirror sensitivity curves illustrated above show that the mirrors still
reflect well at the Lyman-a line at 1216 _. Note that Ly-oc is suppressed by mirror A1.

Tests have shown that the count rate from geocoronal Lyrnan-cx can be as high as 12

counts per second per diode. If you wish to acquire a faint target with the least Ly-cc

contamination, we suggest that you specify DARK TTHE as a Special Requirement in
Phase II.
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8.1 The Effect of COSTAR on the GHRS

Prior to the Servicing Mission, it was believed that the COSTAR mirrors would have lit-

tle effect on the throughput of the (;HRS. It was known that the magnesium fluoride

coatings would severely attenuate light below 1150 ,_, but at longer wavelengths we

anticipated that the light lost from the extra two reflections would be compensated for

by the improved throughput of the restored Point Spread Function.

The actual situation is more complex, as shown below. What is plotted is a mean rela-
tion that was fitted to observations of the same star that were made both before and after

the Servicing Mission. The most prominent feature is the dip at 2000/_. The high ratio

at longer wavelengths is just due to the improved PSE but the peak near 1300/_ is not

understood.
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Figure 8-1. The observed ratio of counts for !1 Col, made before the Servic-

ing Mission (in Cycle 2) and after the deployment of the COSTAR mirrors.
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8.2 Properties of the First-Order Gratings

8.2.1 Useful Wavelength Ranges

The following table summarizes the useful wavelength range for each of the first-order

gratings of GHRS. More precise sensitivity values are enumerated below. Note that lit-
tle or no flux below 1150 ,/k is reflected by the COSTAR mirrors because of their magne-

sium fluoride coatings.

TABLE 8-1
Useful wavelength ranges for first-order gratings

Grating Useful Range (A) A per diode Bandpass (A) Comment

Gi40L 1I00 - 1900 0.572 - 0.573 286 - 287

GI40M 1100 - 1900 0.056 - 0.052 28 - 26

GI60M 1150 - 2300 0.072 - 0.066 36 - 33 2nd order overlap above 23130A

G200M 1600 - 2300 0.081 - 0.075 41 - 38 2nd order overlap above 2300

G270M 2000 - 3300 0.096 - 0.087 48 - 44 2nd order overlap above 3300 A

The last three gratings are used with detector D2, which admits some second-order

light, hence the comments. For example, Lyman-ct light (1216 A,) can appear at 2432 ,/k

in second order. Except for this possibility of geocoronal contamination, many cool

stars have very little short-wavelength flux, so that the best resolution can be achieved

without undue extraneous light by observing in first order near the high-wavelength
limit.

Note that the G270M grating has an order-sorting filter which eliminates light below
about 1650 A so that no cross-order contamination occurs below 3300 A.

8.2.2 Resolving Power

The following figures illustrate the resolving power as measured for each of GHRS'

gratings. In this case the resolving power was computed as R = _,/Ak, where A_, is the
measured full-width-at-half-maximum (FWHM) of lines from an exposure of a spec-

trum calibration lamp. Tests have shown that the measured FWHM does not change sig-

nificantly with wavelength (for the first-order gratings) or with mZ,, the product of the

wavelength and order number (for the echelle gratings). The nominal design specifica-
tion for the GHRS was R = 20,000 for the first-order gratings, but in fact one can exceed

a resolving power of 25,000 at virtually all wavelengths. Similarly, the low-dispersion

grating GI40L has R in excess of 2,000 over most of its useful wavelength range. The
true resolving powers for the echelle gratings are closer to 80,000 than the nominal

100,000.

By providing a sharper image of a point source, COSTAR restores the resolving power
achieved with the LSA to within about 20% of that possible with the SSA. There is no

effective change for the SSA, however.
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Figure 8-2. Spectrum resolving power as a function of wavelength for the
GHRS medium-resolution (holographic) gratings. From left to right the curves
are for G140M, G160M, G200M, and G270M, respectively.
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Figure 8-3. Resolving power for grating G140L.
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8.2.3

TABLE 8-2

Sensitivity Functions for the First-Order Gratings

Below are given sensitivities for the first-order gratings, using the Large Science Aper-

ture, in units of 101J(counts sec -I diode -l) per incident (erg cm -2 sec -I /_-t) . These

values will be updated with precise numbers determined in Cycle 4 but what is listed

here has been adjusted for the known effects of the COSTAR mirrors. SSA sensitivity is

about 50 to 70% of these values, with the larger value applying at longer wavelengths.

Sensitivities for first-order gratings.

Grating

Wavelength (A) G140L G160M G200M

ll00 0.20

!150 20.9

1200 82.3

1250

1300

1350

1400

1450

1500

1550

0.64

2.87

5.77

7.96

7.33

6.41

6.08

4.34

4.87

1600 5.17

1650 4.89

1700 4.74

1750 4.80

1800 4.78

1850 5.02

1900 5.20

1950 5.20

2000

2050

2100

2150

2200

2250

G140M

0.006

0.75

2.27

152. 4.95

168. 7.13

166. 5.89

146. 5.23

114. 4.74

89.3 3.41

67.0 2.34

43.9 1.36

40.0 1.14

32.0 0.88

20.7

10.8

4.03

1.09

2300

2350

2400

2450

2500

5.00

4.75

4.68

G270M

4.48

4.63

5.56

6.53

7.42

8.21

8.61

8.40

8.23

8.57

8.92

9.18

9.35

9.02

8.57

8.14

8.70

9.24

9.76

3.64

4.72

6.72

9.25

12.31

16.19

20.87

23.82

23.98

26.29

32.34

41.63
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TABLE8-2 (Continued)
Sensitivitiestorfirst-ordergratings.

Grating
Wavelength(A) G140L G140M G160M G200M G270M

2550

2600

2650

2700

2750

2800

2850

29OO

2950

3000

3050

3100

3150

3200

3250

3300

V-

49.06

53.21

54.37

53.01

50.28

46.73

42.44

37.71

32.19

25.76

19.46

14.14

10.07

6.53

3.83

2.64
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8.3 Properties of the Echelle Gratings

8.3.1 Wavelength Coverage, Bandpass, and Sensitivity

The following tables summarize basic properties of the two echelle gratings. The dis-

persion in each order has not been listed but does not change if it is computed in veloc-

ity units. At the center of each order, the dispersion is 3.0 km s -i per diode, at the long-

wavelength end of each order it is 2.9 km sl per diode, and at the short-wavelength end

of each order it is 3.1 km s "1 per diode.

TABLE 8-3

Properties of Grating Echelle-A

Central Order Bandpass Per Scattered
Order Wavelength (A) Coverage (A) exposure (A) Light = Sk b

51 1102 1091 - 1113 5.90 - 5.55

50 i124 1113- 1135 6.05-5.65

49 1147 1135 - 1159 6.15 - 5.75 0.061 0.12

48 1171 1159 - 1183 6.25 - 5.90 0.058 0.27

47 1196 1183 - 1209 6.40 - 6.00 0.055 0.46

46 1222 1209 - 1235 6.55 - 6.10 0.052 0.8

45 1249 ! 235 - 1263 6.70 - 6.25 0.049 0.92

44 1277 1263 - 1292 6.85 - 6.40 0.046 1.15

43 1307 1292 - 1322 7.05 - 6.55 0.044 1.16

42 1338 1322 - 1354 7.20- 6.70 0.041 1.34

41 1371 1354 - 1387 7.40 - 6.85 0.039 1.23

40 1405 1387 - 1423 7.55 - 7.00 0.037 1.47

39 1441 1423 - 1460 7.80 - 7.20 0.035 1.04

38 1479 1460 - 1498 8.00- 7.40 0.034 0.91

37 1519 1498 - 1539 8.25 - 7.55 0.032 0.77

36 1561 1539 - 1583 8.45 - 7.75 0.031 0.64

35 1606 i 583 - 1629 8.70 - 7.95 0.030 0.56

34 1653 1629 - 1677 8.95 - 8.20 0.030 0.44

33 1703 1677 - 1729 9.25 - 8.40 0.029 0.40

a. "d" coefficient of Cardelli, Ebbets, and Savage (1993; see Section 9.2 on page 102). These apply only to
the SSA.

b. Sensitivity function at blaze peak, in units of l0 II (counts diode "l sec "l) per incident (erg cm "2 sec "1 ,/vl).
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TABLE8-4
PropertiesofGratingEchelle-B

Order

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

Central
Wavelength (A)

1703

1756

1813

1873

1938

2007

2082

2162

2248

2342

2444

2555

2676

2810

2958

3122

Order
Coverage(A)

1677 - 1729

1729 -1784

1784- 1842

1842 - 1905

1905 - 1971

1971 - 2043

2043 - 2120

2120- 2203

2203 - 2293

2293 - 2391

Bendpess I_.r Scattered Skb
exposure (A) Light"

9.3 - 8.4 0.045 0.35

9.6-8.6

9.9 - 8.9

10.3-9.2

!0.7 - 9.5

ll.l -9.8

11.5- 10.l

11.9- 10.5

12.4- 10.9

13.0 - 11.3

0.043

0.041

0.039

0.037

0.035

0.033

0.031

0.030

0.028

0.026

0.74

1.06

! .62

2.26

3.04

4.29

6.18

8.59

9.96

11.22390-2497 13.6- 11.7

2497 - 2613 14.2 - 12.2 0.024 13.0

2613 - 2740 14.9- 12.7 0.022 13.4

2740- 2880 15.8 - 13.3 0.020 12.8

2880- 3036 16.7 - 13.9 0.018 9.57

3036 - 3209 17.6- 14.6 0.016 4.20

Ebbets, and Savage (1993; see Section 9.2 on page 102).a. "d" coefficient of Cardelli,
the SSA.

b. Sensitivity function at blaze peak, in units of 10 II (counts diode -] sec "1) per incident

These apply only to

(erg cm "2 sec "l A'I).
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8.3.2 Echelle Wavelength Formats

The illustrations below provide a means of estimating where particular wavelengths fall
within the echclle formats and where they lie relative to the blaze peak. Note that these

layouts are purely schematic; the actual length of the free spectral range changes from
order to order. The center of each order is at mk = 56200.

E
k--
(1)

k-

O

(1)

(D
c-
O

I,I

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

I,ll
I I

I I

I I I

I I I

, I
1900

I I I
1950

I i I
2050

I I I I

Zl00
I I I

2200
I I I I

2300
I I I I

2_0
I I I I I

2500
I I I I I

!600
I I I I I

2750
I I I I I I

2900
I I I I I I

I I I

55000

' ' ' I ' ' ' ' I '
I I I i i i

1700
I I I I I I I

1750 1800

1800 1850

1850 1900
I I I I I I I I I

1950
, , I , , , , I ,

2000 2050
I I I I I I I I I

2100
i I J , , J I , i

2150 2200
, , , I , i l , I ,

2250 2300
, , i I , , , , I J

2350 2400
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Figure 8-5. Schematic format of wavelengths for Echelle-A.
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8.3.3 Echelle Blaze Function

The figure below shows the echelle blaze function (also known as the "Ripple Func-

tion") in the form of sensitivity relative to the peak of the blaze as the product of wave-

length and order number.

>
o_

om

03
c-

(/3

_D
>

e_

O

(D

1.0 I I

B

0.5 --

n

0.0

I I I I I I I _'_ I I i I I

i i t i t i I I t J t I I i I t t t I i I I I I I i i i i

55000 56000 57000 58000

mix (Angstroms)

Figure 8-6. Normalized blaze function for the GHRS echelle gratings.
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8.4 Standard Patterns for Substepping and Background
Measurement

This table shows how each STEP-PATT pattern measures the background for a science

exposure. Listed are the STEP-PATT number, the number of spectrum bins for which

substepping occurs, the number of background bins measured, the diodes used to mea-

sure the background, the fraction of the total time spent measuring flux on the science

diodes, the gratings for which the STEP-PATT is appropriate, and the shortest exposure

that can be used for that pattern. The shortest exposure has been computed assuming

COMB=4, which is the recommended value. These minimum exposures can be reduced

by half if COMB=2 is used and by a factor of four for COMB=NO.

TABLE 8-5

STE P-PA'I-r specifications

8'_P -
PA_

number

Bins Measured Spectrum/
Beckgr
Ratio

Diodes used for
Background

On-target
Efficiency

Appropriate
Gratings

Spectrum Background

1 l 0 I 1.00 all 0.8

2 2 0 I 1.00 all 1.6

science

science

1.00

0.89

0.94

0.89science

all

first-order

first-order

echeHe

Minimum
Exposure

Time (sac)

3.2

14.4

27.2

14.4

7 4 2 8 science 0.94 echelle 27.2

8 2 2 8 comer 0.89 echelle 14.4

9 4 2 8 comer 0.94 echelle 27.2

10 2 2 1 science 0.50 first-order 3.2

0.67

0.50

0.67

0.50

0.67

science

science

science

comer

comer

first-order

echelle

eehelle

echelle

echelle

11

12

13

14

15

4.8

3.2

4.8

3.2

4.8

TABLE 8-6 Default STEP-PA't-I" for science modes

Grating

First-order

Ech-A

Ech-B

Order STEP-PATT

1 5

>51 9

<51

>31

<31 7
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TABLE8-7

8.5 The Effects of Reddening in the Ultraviolet

Average normalized ultraviolet extinction as a function of wavelength.

Wavelength (A) Ak/E(B-V ) Wavelength (A) Ak/E(B-V )

1100 11,70 2160 10.10

1200 l O.20 2200 9.85

1300 9.19 2300 8.75

1400 8.54 2400 7.92

! 500 8.29 2500 7.30

1600 8.03 2600 6.82

1700 7.85 2700 6.41

1800 7.90 2800 6.10

1900 8.38 2900 5.85

2000 9.05 3000 5.65

2100 9.90 3300 5.16

The table above lists extinction from interstellar reddening at ultraviolet wavelengths.

More information on the effects of reddening may be found in the bibliography in Chap-

ter 9. The above values are from Code et al. (1976). Seaton (1979) has provided conve-

nient fits to ultraviolet extinction for x = l/g, with g in microns:

x range X(x) = A_/E(B-V)

2.70 < x < 3.65 1.56 + 1.048x + 1.01 / [ (x- 4.60) 2 + 0.2801

3.65 < x < 7.14 2.29 + 0.848x + 1.01 / [ (x- 4.60) 2 + 0.280]

7.14 < x _<10 16.17 - 3.20x + 0.2975x 2
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8.6 Instrumental Properties

8.6.1 The Point Spread Function

The illustration below shows the PSF for the GHRS after the installation of the COS-

TAR mirrors, to allow for estimation of the degree of scattered light in the vicinity of a

bright object. Note that this PSF is only one-dimensional, and was only measured on

one side of the center of the aperture at that; in fact the true PSF has two-dimensional

structure. The relative throughput of the SSA at the wavelength at which this measure-

ment was done (1450 ,_) is 0.55.

,m
03
c-

-4--/

c-
om

>
°--

¢D
L_

Cn
O

0 1 2 3 4 5 6 7 8

Offset (orcsec)

Figure 8-7. Normalized Point Spread Function for the GHRS. The upper

curve is for the LSA and the lower for the SSA, both normalized to 1.0 at the

origin.
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8.6.2 Detector Dark Count and the CENSOR Option

Each Digicon diode has its own discriminator, and if they are properly set the dark count

rate measured is very low. On-orbit measurement has shown that both GHRS detectors
have a dark rate less than the design goal of 0.01 counts diode "1 sec "1 at low geomag-

netic latitudes and that the dominant noise source is cosmic rays. During SAA passage,
the noise increases to a maximum of about 1 count diode "1 sec "1. The scheduling soft-

ware for HST uses known contours of the SAA and does not accumulate counts when

the spacecraft is within those contours.

Even outside the SAA, observations show that "dark" counts tend to come in bursts.

Approximately 15% of dark counts are produced by events that occur within a time of 8
ItS or less. The CENSOR feature in Accumulation Mode allows you to ignore integra-

tions with such high dark rates. CENSOR works by summing all 512 channels of the

Digicon every 8 Its, and if that sum exceeds a threshold a coincident event is recorded.

The flight software maintains a record of how many coincidence events occurred within

a given STEP-TIME and can reject and repeat a subexposure for which the coincidence

sum exceeds a specified level. The coincidence circuit reacts only to strong events that

trigger about 8 diodes simultaneously, so that only the high-amplitude tail of back-

ground events can be rejected, even if the specification is to reject any STEP-TIME
with a non-zero coincidence sum. It is estimated that use of CENSOR can reduce the

dark count rate by about 20%. Using CENSOR=YES is unlikely to degrade an observa-

tion (unless the object is bright enough to cause a consistently high count rate), but the

benefit is also low: only about a 10% gain in S/N in favorable cases.

The dark count rate is highly uniform over the diodes, so that a mean dark count rate is

an excellent representation of what happens at the detector.

Summary:

• The pre-flight noise specification was 0.01 counts diode -] sec "1. The average mea-
sured value is 0.005 for D 1 and 0.008 for D2.

• The background is sensibly constant between -20 and +20 ° geomagnetic latitude.

• At +40 ° geomagnetic latitude, the extrema of HST's orbit, the rate is twice that at the

geomagnetic equator. Typical average rates are 0.007 counts per diode per second
for D1 and 0.011 for D2.

• The background rate is correlated with the cosmic ray and trapped particle flux. Cal-

culations show that the dark noise can be accounted for by cosmic-ray-induced Cer-

enkov radiation in the faceplates of the Digicons.

• The background due to the direct penetration of cosmic rays into diodes is very low
(0.0004 counts diode "1see'l).

When using CENSOR:

• Use the default STEP-TIME of 0.2 sec.

• Do not use CENSOR iftbe expected count rate exceeds about 100 counts per second

per diode because real photon events will be rejected. In a severe case, all the data
could be lost.

• Using CENSOR can drop the noise level by about 20%. The nominal Side 2 dark

count rate is 0.011 counts per second per diode, so CENSOR=YES can lower it to
0.0088.
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TABLE8-8

The following table shows the expected effects of using CENSOR. Rate is the target

count rate per diode per second; the second column shows the standard S/N and the
third column lists the S/N achieved with CENSOR=YES if the dark is 80% of its

value without CENSOR. Signal-to-noise was calculated on a per diode basis for a

Effects of CENSOR

Rate Standard SIN S/N with CENSOR=YES

100 999.94 989.9 l

10 316.05 312.91

! 99.45 98.56

0.1 30.02 30.01

0.01 6.90 7.22

0.005 3.95 4.21

0.001 0.91 1.00

nominal exposure time of 10,000 seconds (which is reduced to 9,800 if CENSOR is

used because of the loss of 2% of the exposures).

Note that for rates exceeding one per second the effective loss of exposure time (due

to 2% of the exposures being rejected) more than offsets any reduction of the noise.

At a rate of 0.I CENSOR has essentially no effect on S/N but for lower rates CEN-

SOR can help.
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8.6.3 NoiseRejectionwithFLYUM

FLYLIM is a special commanding option for rejecting noise in cases where the source

signal is much weaker than the noise level. The idea is that as lIST circles the Earth it
finds itself in different noise environments due to the changing magnetic field, and that

influences the detected noise background. Also, the background noise occurs as discrete

events from radiation in the space environment. If the source count level is well below

the background noise, then spectra integrated over a sufficiently short interval that con-

tain multiple counts are probably just noise, and should be rejected, whereas spectra

with single counts are more likely to contain real information. The rejected spectra are
discarded, which wastes observing time, but there is a net gain in signal-to-noise. A test-

in-principle run in 1993 showed that the net background rate could be reduced to as low
as 0.002 counts sec 1 diode l for the Side 2 detector, which was a factor of four

improvement over the mean dark rate. This gain was achieved at the cost of the loss of
about 25% of the individual 0.2 second STEP-TIME integrations.

By "special commanding" we mean that FLYLIM is requested as a comment on the

Phase II proposal, rather than as an optional parameter. The normal scheduling system
cannot automatically invoke FLYLIM; manual intervention is necessary. A detailed

description of FLYLIM cannot be provided here, but if users believe that FLYLIM may

be of help in their science program they should note the following:

• The use of the FLYLIM parameter may not be assumed by the proposer but instead

must be arranged in advance, i.e., before the Phase I proposal deadline, through con-
sultation with a GHRS Instrument Scientist. The TAC will be made aware that

FLYLIM may require additional resources to implement.

• If your program that uses FLYLIM is approved, we will attempt to execute it on a

best efforts basis, but limited resources may prevent that.

• At the time this is written FLYLIM has not been fully tested and its use is at the

observer's risk.
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8.6.4 CountRateLinearity

Deviations from linearity in the way in which the Digicons count photons at high rates
were illustrated above in Figure 7-2 on page 71. The effective deadtime for the GHRS
detectors has been measured to be 10.2 ;is for detector DI. The same value has been

assumed to hold for D2. Deviations from linearity are imperceptible below 103 and can

be corrected to an accuracy of 1% up to a measured count rate of 20,000 (in units of
counts diode 1 s'l).

v

8.6.5 Image Stability

The images formed by the Digicons are vulnerable to the effects of the Earth's magnetic

field. Over the course of a full orbit, the amplitude of the motion is about 50 microns per

Gauss for D2 (about 15 microns peak-to-peak) and 10 microns per Gauss for D1. The

50 micron motion seen in D2 corresponds to the size of a diode. This geomagnetically-

induced image motion CGIMP"), together with thermal effects, is the underlying reason
for breaking up long exposures into segments of no more than about 5 minutes each.

8.6.6

8.6.6.1

Wavelength Calibrations

The GHRS has two spectrum calibration lamps, although only lamp SC2 now operates.
Lamp SC1 should not be specified under any circumstances. Both are platinum-neon

hollow cathode lamps manufactured by Westinghouse, providing a rich array of emis-

sion lines throughout the ultraviolet region that the GHRS observes. The lines are bright

enough so that a 30 second exposure will yield a good comparison specu'um at almost

any wavelength, although longer times are needed at some echelle settings. The lamps

are designated SOl and $02 and are selected by using WAVE as the target specification

with _qCl or SC2 as the aperture. Each lamp, in fact, has its own aperture, offset from

the two science apertures of the GHRS. SC2 forms its spectrum at the same y deflection

as the SSA, but displaced in x (the direction of dispersion). SC1 is nearly aligned with

the SSA in x but differs in y by about 130 deflection steps. The lamp apertures are each

67 microns square and they form Gaussian-shaped images with FWHM = 1.1 diode
widths.

A wavelength calibration exposure made with the star in the SSA may be contaminated
by the stellar spectrum. This is because the SSA has no shutter and the fact that the SC2

aperture is in line with the SSA. This contamination is rarely a serious problem, bow-

ever, because it is possible to subtract the stellar component. Also, such exposures are
usually used to only confirm the zero-point of the spectrum and not to obtain a full

wavelength solution.

For a comprehensive listing of the platinum lines, see Reader et al. (1990).

Aperture Offsets

The light from the spectrum calibration lamps does not enter the spectrograph along the
same path that starlight takes. This introduces a wavelength shift that must be corrected

for in solving for the wavelength solution. The data reduction software incorporates cor-

rections that were determined during pre-flight ground testing (new values are being
measured in Cycle 4).
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8.6.6.2

8.6.6.3

ThermalEffects

The image formed by the Digicons is also affected by the thermal environment within

the GHRS, which in turn is influenced by whatever electronics happen to be on or off in
the GHRS and the other instruments. The temperature inside the GHRS can be moni-

tored and the image motion calibrated. This correction is also provided for in the data
reduction software. However, this correction is applied only once to a given Exposure

Logsheet line. We recommend that the exposure times for individual Exposure Logsheet

lines be kept shorter than about one hour as long as you do not encounter problems with

using too much on-board memory (see Section 4.6 on page 47).

Geomagnetic Effects

As for overall image stability, geomagnetic effects influence wavelength stability. Long

exposures should be divided into units of about 5 minutes each, the time over which the

wavelength scale does not change measurably.
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We have tried to make this Handbook a comprehensive guide to using the Goddard

High Resolution Spectrograph, but some of the best information on the instrument and

the uses to which it can be put can be found in the open literature. Here we provide three
lists. The first provides additional information on interstellar reddening in the ultravio-

let. The next is technically oriented, and gives papers that provide detailed information
on specific aspects of the GHRS. The final list is of scientific papers that have used
GHRS data.

v

9.1 Ultraviolet Extinction

"Ultraviolet Photometry from the Orbiting Astronomical Observatory. H. Interstellar
Extinction."

Bless, R.C., and Savage, B.D. 1972, ApO, 171,293-308.

"Studies of Ultraviolet Interstellar Extinction with the Sky-survey Telescope of the TD-J
Satellite."

Nandy, K., Thompson, G.I., Jamar, C., Monfils, A., and Wilson, R. 1976, A&A, 51,
63-69.

"Empirical Effective Temperatures and Bolometric Corrections for Early-Type Stars."

Code, A.D., Davis, J., Bless, R.C., and Hanbury Brown, R. 1976, ApJ, 203, 417-
434.

"Interstellar Extinction in the UV"

Seaton, M.J. 1979, MNRAS, 187, 73P-76P.

"Observed Properties of Interstellar Dust"

Savage, B.D., and Mathis, J.S. 1979, ARA&A, 17, 73-112.

9.2 GHRS-Related Technical Papers

"Ultraviolet High-Resolution Spectroscopy from the Space Telescope."

Ebbels, D.C., Brandt, J.C., and the HRS Investigation Definition Team 1983, PASP,
95, 543-549.

"Wavelengths and Intensities of a Platinum/Neon Hollow Cathode Lamp in the Region
I i 0o-4000 A"

Reader, J., Acquista, N., Sansonetti, C.J., and Sansonetti, J.E. 1990, ApJS, 72,
831-866.

"Status of the Goddard High Resolution Spectrograph in May 1991."

Ebbets, D.C., Brandt, J., Heap, S. 1991, in The First Year of HSTObservations,
edited by A.L. Kinney and J.C. Blades, p. 110-122,
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"Scattered Light in the Echelle Modes of the Goddard High Resolution Spectrograph

Aboard the Hubble Space Telescope. 1. Analysis of Prelaunch Calibration Data."

Cardelli, J.A., Ebbets, D.C., and Savage, B.D. 1990, 365, 789--802.

"Scattered Light in the Echelle Modes of the Goddard High Resolution Spectrograph

Aboard the Hubble Space Telescope. II. Analysis of lnflight Spectroscopic Observa-
lions."

Cardelli, J.A., Ebbets, D.C., and Savage, B.D. 1993, ApJ, 413, 401-415.

"Resolution and Noise Properties of the Goddard High Resolution Spectrograph"

Gilliland, R.L., Morris, S.L., Weymann, R.J., Ebbets, D.C., and Lindler, D.J. 1992,
PASP, 104, 367-382.

This last paper is especially recommended for its discussion of the deconvolution of

the effects of the Point Spread Function (PSF) and Line Spread Function (LSF) of
HST and the GHRS.

"Final Report of the Science Verification Program for the Goddard High Resolution

Spectrograph for the Hubble Space Telescope"

Ebbets, D.C. 1992, prepared for NASA/Goddard Space Flight Center by Ball Aero-

space Systems Group.

This is a technical document prepared by Ball to fulfill a contractual requirement. It

provides a detailed description of the tests and calibrations performed during the

Science Verification phase that occurred immediately after the launch of HST. We

cite it here for completeness, but a General Observer should usually be able to get
the information that he or she needs from this Handbook or by consulting us.
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9.3 GHRS Scientific Papers

A number of GHRS-related papers are concentrated in three special volumes whose
contents will not be itemized here:

• The First Year of HST Observations, 1991, edited by A.L. Kinney and J.C. Blades,
and published by STScI.

• AstrophysicalJournalLetters, volume 377, number 1, 1991.

• Science with the Hubble Space Telescope, 1992, edited by P. Benvenuti and E.

Schreier, and published by ESO.

1992:

1993:

"The Abundance of Boron in Three Halo Stars"

Duncan, D.K., Lambert, D.L., and Lemke, M. 1992, AIM, 401,584-595.

"Ultraviolet Observations of the Gas Phase Abundances in the Diffuse Clouds Toward

Zeta Ophiuchi at 3.5 Kilometers per Second Resolution"

Savage, B.D., Cardelli, J.A., and Sofia, U.J. 1992, AIM, 401,706-723.

"Fractionation of CO in the Diffuse Clouds Toward Zeta Ophiuchi"

Shoffer, Y., Fedorman, S.R., Lambert, D.L., and Cardelli, J.A. 1992, AIM, 397, 482-
491.

"Highly Ionized Atoms Toward HD 93521."

Spitzer, L., and Fitzpatrick, E.L. 1992, AIM, 391, L41-L44.

"Ultraviolet and Optical Spectral Morphology of Melnick 42 and Radcliffe 136a in
30 Doradus"

Walbom, N.R., Ebbots, D.C., Parker, J.W., Nichols-Bohlin, J., and White, R.L. 1992,
AIM, 393, L13-L16.

"Detection of a Proton Beam During the Impulsive Phase of a Stellar Flare"

Woodgate, B.E., Robinson, R.D., Carpenter, K.G., Maran, S.P., and Shore, S.N.
1992, AIM, 397, L95--L98.

"Interstellar Mg 11and C IV Absorption Toward Mrk 205 by NGC 4319: An 'Optically-
Thick' QSO Absorption System"

Bowen D.V., and Blades, J.C. AIM, 403, L55-L58.

"Observations of 3C 273 with the Goddard High Resolution Spectrograph on the Hub-
ble Space Telescope"

Brandt, J.C., el al. 1993, AJ, 105, 831--846.
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"The Galactic Halo and Local Intergalactic Medium toward PKS 2155-304"

Bruweiler, F.C., Boggess, A., Norman, D.J., Grady, C.A., Urry, C.M., and Kondo, Y.
1993, ApJ, 409, 199-204.

"Ultraviolet Transitions of LOw Condensation Temperature Heavy Elements and New

Data for lnterstellar Arsenic, Selenium, Tellurium, and Lead"

Cardelli, J.A., Federman, S.R., Lambert, D., and Theodosiou, C.E. 1993, ApJ, 416,
L41-L44.

"Abundance of Interstellar Carbon Toward Zeta Ophiuchi"

Cardelli, J.A., Mathis, J.S., Ebbets, D.C., and Savage, B.D. 1993, ApJ, 403, L17-
L20.

"Detection of Boron, Cobalt, and other Weak Interstellar Lines toward _ Ophiuchi"

Federman, S.R., Sheffer, Lambert, D.L., and Gilliland, R.L. 1993, ApJ, 413, Lf1-
L54.

"Quantitative Spectroscopy ofK647 _ the PNN of Psl in the Globular Cluster M15"

Heber, U., Dreizler, S., and Wemer, K. 1993, Acla Astron., 43, 337-342.

"The lnterstellar Abundances of Tin and Four Other Heavy Elements"

Hobbs, L.M., Welty, D.E., Morton, D.C., Spitzer, L., and York, D.G. 1993, ApJ, 411,
750-755.
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"Deceleration of Interstellar Hydrogen at the Heliospheric Interface"

Lallement, R., Bertaux, J.-L., and Clarke, J.T. 1993, Science, 260, 1095--1098.

Provides a good illustration of geocoronal Ly-(x with the LSA and Echelle-A.
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Leckrone, D.S., Johansson, S., Wahlgren, G.M., and Adelman, S.J. 1993, Physica

Scripta, "1"47,149-156.

"Goddard High Resolution Spectrograph Observations of the Local Interstellar
Medium and the Deuterium/Hydrogen Ratio Along the Line of Sight Toward Capella"

Linsky, J.L., Brown, A., Gayley, K., Diplas, A., Savage, B.D., Ayres, T.R., Landsman,
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Glossary of Terms and
Abbreviations

Here we provide definitions and explanations of technical terms and abbreviations used

in the text. The usual abbreviations found in HST-related documents (e.g., WFPC2,

FGS) are not repeated here.

Blaze Function

The efficiency of an echelle grating drops sharply as one moves away from blaze center.

The shape of the response function is virtually the same for the different orders and this

function is known as the Ripple Function (see Section 8.3.3 on page 91).

Corner diodes

The detector area of the Digicons is laid out into specific diodes, each of which acts as

an independent detector. There are 500 science diodes, each of which is skinny but tall,

four focus diodes (see below), and four comer diodes. The comer diodes are large rect-
angles (0.1 x 1 mm) of detector area above and below the science diodes and are used

for measuring background.

Cycles

Proposals to use HST are solicited and reviewed on roughly an annual basis. However,

because HST's properties changed fundamentally when COSTAR and WFPC2 were

installed, Cycle 3 was defined to end at the time of the Servicing Mission. Cycle 4 began

at the end of SMOV. Cycle 5 is due to begin in mid 1995.
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CVZ

Continuous Viewing Zones. The inclined orbit of HST allows for uninterrupted obser-

vations of objects in some declination ranges at certain times. See the Call for Proposals
for further information.

DEFCAL

Short for Deflection Calibration. All GHRS acquisitions begin with a DEFCAL, which

measures the instantaneous location of the images on the onboard spectrum lamps and

then compares that location to the nominal coordinates stored in the onboard database.
The differences can range over several deflection steps in response to thermal and mag-

netic drifts. The offsets are applied to the database coordinates of the science apertures

to provide an updated estimate of their location. In practice, only observations of lamp
SC2 are used because of the loss of Side 1 and because using SC2 decreases the time

interval between the DEFCAL and the target locate phase of the acquisition.

Focus diodes

See Chapter 7 to see how the diodes in the GHRS Digicons are configured. At both ends
of the array of 500 science diodes are two focus diodes. The focus diodes are smaller

than the science diodes and are square. The image of the LSA is deflected to the focus

diodes to generate MAPs and IY_GEs. The focus diodes are 25 microns square.

GIMP

Geomagnetically-induced image motion problem. This problem underlies our recom-

mendation to have no single exposure be longer than about 5 minutes in length. See

Section 8.6.5 on page 98.

GSC

Guide Star Catalog, the list used to find stars upon which the Fine Guidance Sensors can

lock to control the pointing of HST.

LSA

Large Science Aperture. This is a square opening at the front of the GHRS that is used

to acquire stars and for some science observations. Its dimensions were 2.00 arcsec

square before COSTAR is installed and 1.74 arcsec square afterwards. The name used
for the LSA will continue to be "2.0".

OSS

Observation Support System, which is the facility located at STScI for real-time interac-

tion between the ground and the HST spacecraft.
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PhaseI

A Phase I proposal for HST includes just the information need by the Telescope Alloca-

tion Committee (TAC) and STScI to judge scientific merit and technical feasibility. In

addition to the scientific justification, you are asked to provide a list of the targets that

you wish to observe and a brief description of the observations themselves. We recom-
mend adding comments to provide a clearer explanation of what you intend, even if they

are not required.

Phase II

The Phase II proposal is written once the Phase I proposal has been accepted for the

HST science program. The Phase II proposal includes all the detailed specifications that

are needed to turn your science program into the commands that the spacecraft will exe-
cute. As with Phase I, we recommend the liberal use of comments to help ensure that

your goals will be achieved.

Ripple Function

See Blaze Function

SAA

South Atlantic Anomaly. A region lying over southeastern South America where the

earth's radiation belts dip low, leading to high particle background rates for satellites in

Low Earth Orbit. GHRS observations are suspended during passage through the SAA.

Side 1, Side 2

GHRS is split into two "sides," one for the short-wavelength detector (D 1) and one for

the long-wavelength detector (D2). The sides operate independently but depend on each

other for communication with the spacecraft. The installation of the GHRS Repair Kit

during the HST Servicing Mission has meant that all GHRS communications are now

through Side 2. Moreover, Side 2 now solely controls the grating carrousel and LSA
shutter.

SMOV

Servicing Mission Orbital Verification, the period of time immediately after the Servic-

ing Mission in which the basic capabilities of the telescope and instruments are verified.

SPYBAL

SPectrum Y BALance. A SPYBAL consists of a quick observation of the spectrum cali-

bration lamp SC2 at a standard wavelength setting to ensure that the spectrum is prop-
erly centered on the diodes in the cross-dispersion direction. The y position at this

standard wavelength is compared to a stored value and the difference is applied to the

observations made with the proposal configuration until another SPYBAL is done. A

SPYBAL is normally done before each new use of a different spectrum element, such as
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a grating. The resultant spectrum is provided to the observer and can be used to improve
the default wavelength calibration.

SSA

Small Science Aperture. The nominal (pre-COSTAR) size was 0.25 arcsec square, but
after COSTAR it is 0.22 arcsec square. The name for this aperture will continue to be
"0.25".

STEIS

Space Telescope Electronic Information Service. This service provides on-line news,

information, and documents via anonymous tip. To use it, tip to stsci.edu (Internet node

130.167.1.2) and login with username anonymous, using your last name as password.

Use get to transfer the README file in the entry directory; this will provide a general

explanation of how to access STEIS information. For more details, consult the User

Support Branch.

STEP-PAI"r

STEP-PATT is the pattern of operations undertaken in an ACCUM. A typical STEP-

PATT defines the relative proportions of time spent accumulating on the science diodes

versus time with the background diodes. See Section 8.4 on page 92.

STEP-TIME

STEP-TIME is the exposure time for the smallest unit of an exposure. For example, dur-

ing an acquisition, STEP-TIME is the amount of time spent at each dwell point while

executing a spiral search pattern. During an ACCUM, the detector integrates for a STEP-

TIME before reading the diodes and adding their contents to the memory. A unit of

STEP-TTME is spent executing each portion of a STEP-PATT, for example.
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Accumulation Mode 13.19, 34, 43--45

CENSOR 44

details 95-96

CENSOR. see also noise rejection
COMB 15,44

DOPPLER 44

FP-SPLIT 14,30, 43,44

high signal-to-noise methods 107

parameter summary 44

STEP-PATT 15.44,92, 114

STEP-TIME 44

substepping 19

acquisition parameters

ACQ/PEAKUP. see acquisition parameters, PEAKUP
BRIGHT and FAINT limits 17, 26, 37, 41

calculating 68
BRIGHT=RETURN 17, 25, 34.37, 41, 71

BRIGHT=RETURN compared to specifying limits 37

DEC-OFF 40

ETA-OFF 40

EXTENDED 39

LOCATE 17,41
LOCATE=EXTENDED 8

MAP 37, 40, 41,42
MAP=ALL-POINTS 40

PEAKUP 15,34, 38,40, 41
STEP-TIME 71

RA-OFF 40

SEARCH-SIZE 36,37, 40

Special Requirements 41
STEP-TIME 71

for PEAKUP 71

maximum permitted 38
STEP-TIME as COMMENT 41

summary 40
XI-OFF 40

acquisitions 15, 17, 24, 34, 35--41, 68--80

early 16, 18, 25, 35, 36
extended objects 39, 76

faint objects 39
DARK TIME 39, 80

Side 2 acquisition for Side 1 observing 8, 38

using FOS 8, 39
flux measurement 17

initial pointing 35
interactive ! 6, 18, 24, 35

offseting
and guide stars 40

offsetting 36, 39
onboard 17, 36, 40

parameter summary 40

real time, see acquisitions, interactive

reddening 68
see also targets

spiral search 36, 37

targets, see targets

apertures 12
angular scale 9
LSA 9, 12. 17. 18.28.34.35.36, 38,41,42,85, i12

shutter 12.28
nomenclature 9

physical locations 58
physical size 60

plate scale 9
SSA 9. 12. 17.28. 34, 38,41.42. 114

B
background

echelle interorder 19

geocoronal Lyman-o_ 80
LSA shutter 12
measurement 92

scattered light 87.88
echelles 103

bandpass 87.88
blaze function 91, 111

C
calibrations

precision and accuracy 46
wavelength 34, 47.98

aperture offsets 98
contamination from SSA 98

geomagnetic effects 99
lamps 98
line widths 98

tables 102
thermal effects 99

carrousel 14

CENSOR

see noise rejection

Continuous Viewing Zone 16, 112
conventions

text 7

units 8
coordinated observations 47

cosmic rays 95
CVZ, see Continuous Viewing Zone

Cycle 5 111

D
DARK TIME Special Requirement 39, 80

data quality 43
deadtime correction

see paired pulse correction
deconvolution 103

DEFCAL 112

detectors 60

count rate linearity 98
D1 14

D2 14

dark count 95

Digicon, see Digicon

granularity 14

image stability 98
sampling 15
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Digicon 14

paired pulse correction 71
diodes

corner 28, 92

focus 42, 43, 112

science 92

diodes, corner I 11

Doppler shift 19, 44, 46

E

early acquisition, see acquisitions, early
e-mail addresses 2

exposure time calculation 26
extinction, ultraviolet 93, 102

F

fluxes, variable 18
FLYLIM

see noise rejection

FOC 18, 24, 35, 36, 43

G

geocoronal Lyman-O_ 27, 80, 105

geomagnetically-induced image motion 47, 98, 112
GHRS

as slitless spectrograph 43

paired pulse correction 71

photometric precision 13
Point Spread Function 94
resolving power 12, 83, 103
scientific papers 104
STScl contacts 2

technical papers 102
time resolution 13

useful wavelength range 12
granularity 14

gratings
cross-dispersers 60
Ech-A 87

Ech-B 88

echelle 12, 14, 60

bandpass and sensitivity 87
blaze function 91, 111

resolving power 83

scattered light 87

wavelength format 89
first-order 12, 14, 60, 85

resolving power 83

useful ranges 83

holographic 14
GSC 35, 112

H

HST memory capacity 13, 16, 47

I
IMAGE Mode 16, 20, 40, 42--43

as slitless spectrograph 43

critically sampling 42
DELTA-X, DELTA-Y 42

maximum STEP-TIME 43

NX, NY 42

parameter summary 42
PRECISION 43

interactive acquisitions, see acquisitions, interactive

L

Large Science Aperture, see apertures, LSA
Line Spread Function (LSF) 103

M

MAP, see acquisition parameters, MAP

mirrors 36, 40, 42, 60

A1 14, 25
A2 14

attenuated 14

Cam-A 14
Cam-B 14

effective areas 78

NI 14
N2 14

normal 14

moving targes, see targets, moving

N

NO GAP Special Requirement 34

noise rejection
CENSOR 27, 95

FLYLIM 9, 27, 45, 97

noise, fixed-pattern 30

O
OSCAN Mode 20, 45

see also parameters for Accumulation Mode
OSS 112

P

paired pulse correction 71

peakup, see acquisition parameters, PEAKUP
Phase I 22, 113

acquisitions 24
Phase II 22, I 13

photometric precision 13

plate scale 9

Point Spread Function 94, 103

R
RAPID Mode 13, 16, 20,45,46

SAMPLE-TIME 20, 46

Rapid Readout Mode, see RAPID Mode
reddening 27, 93, 102

effect on acquisition count rates 68
resolution, time 13

resolving power 12, 83

ripple function
see blaze function
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S
SAA, see South Atlantic Anomaly

sampling 15
scattered light 28, 87.88

SEARCH-SI ZE. see acquisition parameters, SEARCH-
SIZE

sensitivity 26

sensitivity function 85
Sidel 8,12,113

Side2 12. 113

signal-to-noise estimation 29
slitless spectrograph mode 43

Small Science Aperture, see apertures. SSA

South Atlantic Anomaly 16. 19, 27, 95, 113

spectrograph temperature 47

Spectrum Y Balance. see SPYBAL

spiral search, see acquisitions, spiral search

SPYBAL 19, 113
STEIS 10, 114
STEP-TIME 114

substepping 92

T
targets

bright problems 25
complex 38
coordinates 18

crowded fields 25. 35
extended 8, 18, 26

faint 26, 39

moving 18, 25.35

nearby neighbors 18

offsetting 36, 39
point source 36
variable 18, 26, 35

Targets of Opportunity 47

telephone numbers 2
time resolution 13

W

wavelength tables 102
WFPC2 18,24.35.36

WSCAN Mode 20, 45

see also parameters for Accumulation Mode
WAVE-STEP 45
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